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Abstract

This research reflects my theoretical and experimental journey into the lost
space of wireless radio localization in the far field of 2.4GHz Commercial-Off-
The-Shelf (COTS) radios. At the end of this journey, we arrive at the conclu-
sion that existing phase- and time-based localization systems such as Radio
Interferometric Positioning Systems (RIPS) and Time-Of-Flight (TOF) are not
reliable in dynamic indoor environments. Our new localization system uses
space-based rather than phase- or time-based measurements and shows ade-
quate robustness for such environments.

In the far field, the measured signals are a function of the four wave param-
eters time, position, temporal frequency and spatial frequency. These wave
parameters are variables in propagation models that represent solutions to the
Maxwell equations that govern the propagation of radio waves. Localization
reduces to fitting the measured signals to the appropriate propagation model at
the unknown locations. We identify three types of localization systems based
on how the measurements deal with wave parameters: RSS-, phase- and TOF-
based systems. The first part of this research explores these individual systems.

This journey starts by introducing a novel distributed connectivity-based
localization system using a commonly employed flooding protocol. It exploits
a certain part of the information in the protocol that other algorithms consider
as redundant or false. This increases the localization performance in compar-
ison with similar RSS-based systems, especially in harsh but static environ-
ments.

In static environments, it is assumed that the optimal propagation model
settings are known beforehand and are constant over space, time and hard-
ware. In real indoor environments, these optimal propagation model settings
depend on the locally and time varying permittivity and permeability of local-
ization space. The challenge then becomes to determine the conditions under
which RSS-based localization systems can calculate the optimal propagation
model settings on-the-fly allowing for dynamic environments. These condi-
tions turn out to be constraints on the localization surface acting as a spatial
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filter. Experiments verify that this approach can cope with dynamic environ-
mental influences, like unknown and varying antenna orientations. However,
the localization performance of such systems is of the order of meters, inade-
quate for many applications. The located objects remain lost in space.

The research then turns to exploit the temporal coherence of our radio trans-
mitters. Their narrow bandwidths allow two different transmitters to interfere
and produce beat signals. Phase measurements of beat signals inherently pro-
vide better localization performance, both in theory and in practice. Although
the approach taken is unique and successful, earlier successful measurements
in a different frequency regime had proven the feasibility of this rather complex
but accurate localization technique. Our experiments in outdoor environments
show accuracies of the order of decimeters. However, theory and experiments
show that this approach cannot provide reliable indoor localization.

The final challenge then becomes to achieve robust outdoor as well as in-
door localization. As space and time are interconnected through the constant
speed of light, performing measurements in the space domain rather than in
the time domain enable one to account for the high degree of spatial disper-
sion in dynamic indoor environments. We call this approach space-based RSS.
It is a simple and inexpensive localization technique that turns out to yield lo-
calization performances approaching the theoretical limits as given by diffrac-
tion theory of electromagnetic radiation. Space-based RSS provides a simi-
lar localization performance as phase- and TOF-based localization systems in
outdoor environments. In Non-Line-Of-Sight (NLOS) indoor environments,
space-based RSS outperforms existing phase- and TOF-based localization sys-
tems and provides our required robust localization performance.

In theory, resolving power in the far-field is determined by the ratio of
wavelength and the outer dimension of localization space. This outer dimen-
sion in turn is limited by the spatial filter used as a constraint on our calibration-
free localization system. In the end, it is not surprising that the outer bound of
localization space sets the lower bound on localization performance in an in-
versely proportional relationship. Such relationships are commonly expressed
by the well-known uncertainty principles for Fourier conjugates of wave pa-
rameters as well as by the equivalent Cramer-Rao-Lower-Bound principle. For
the first time, this research compares these limits achieved by the relevant exist-
ing localization techniques, both in theory and in practice, and both in outdoor
and indoor environments. As all measurements of comparable localization
techniques such as RSS-, TOF- and phase-based localization were performed
by us, this should leave little or no doubt about the validation of this theoreti-
cal and experimental comparison.



Samenvatting

Dit onderzoek beschrijft mijn theoretische en experimentele reis in het ver-
loren verre veld van draadloze netwerken van 2.4GHz radio’s. Aan het einde
van de reis komen we tot de conclusie dat bestaande fase- en tijd-gebaseerde
lokalisatiesystemen, zoals Radio Interferometrische PositioneringsSystemen
(RIPS) en systemen gebaseerd op Time-Of-Flight (TOF), binnenshuis onbetrouw-
baar zijn. Ons nieuwe lokalisatiesystem is wel betrouwbaar in dat soort omgevin-
gen en is gebaseerd op ruimte- in plaats van op fase- of tijd-gebaseerde metin-
gen.

In het verre veld zijn de gemeten radiosignalen een functie van de vier golf-
parameters tijd, positie, tijdfrequentie en ruimtefrequentie. Deze golfparame-
ters zijn variabelen in propagatiemodellen. Propagatiemodellen zijn oplossin-
gen van de Maxwell vergelijkingen die de voortplanting van radiogolven beschrij-
ven of in parametervorm empirisch benaderen. Lokalisatie is dan terug te
voeren tot het fitten van de gemeten radiosignalen met het gekozen prop-
agatiemodel op de onbekende locaties. Wij identificeren drie lokalisatiesys-
teemtypes gebaseerd op hoe de metingen invloed hebben op de golfparame-
ters: Signaal Sterkte- (RSS), Fase- en Time-Of-Flight-gebaseerde systemen. Het
eerste deel van dit onderzoek beschrijft en vergelijkt deze drie systeemtypes.

Onze reis begint met het introduceren van een nieuw gedistribueerd op
connectiviteit gebaseerd lokalisatiesysteem. Daarbij wordt gebruik gemaakt
van een veel gebruikt “flooding” protocol. Ons nieuwe lokalisatiesysteem maakt
gebruik van een bepaald deel van de informatie in dat protocol dat andere
lokalisatiesystemen als overbodig of vals beschouwen. Dit verhoogt de lokalisa-
tienauwkeurigheid in vergelijking tot dezelfde soort RSS-gebaseerde systemen,
vooral in complexe maar statische omgevingen.

In statische omgevingen wordt aangenomen dat de optimale propagatiemod-
elparameters vooraf bekend zijn en dat deze niet variëren over de ruimte, tijd
en met de hardware. Binnenshuis, bijvoorbeeld in kantooromgevingen zijn
deze parameters afhankelijk van de lokale en tijdsafhankelijke permittiviteit en
permeabiliteit van de ruimte. De uitdaging is dan om de voorwaarden te vin-
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den, waaronder RSS-gebaseerde lokalisatiesystemen deze parameters “on-the-
fly” kunnen bepalen. In dat geval kunnen lokalisatiesystemen in dynamische
omgevingen werken, zelfs binnenshuis. De gevonden voorwaarden vormen
beperkingen op het lokalisatieoppervlak. Ze werken als een ruimtelijk filter.
Experimenten met onbekende en variërende antenneoriëntaties laten zien dat
deze aanpak de lokalisatienauwkeurigheid verhoogt. Echter, de lokalisatien-
auwkeurigheid van dergelijke systemen blijft in de orde van enkele meters wat
voor veel toepassingen onvoldoende is. De objecten blijven verdwaald in de
ruimte.

Het onderzoek richt zich daarna op de tijdscoherentie van radiozenders.
De smalle bandbreedtes maken het mogelijk dat twee verschillende radiozen-
ders interfereren en een verschilsignaal produceren. Lokalisatie gebaseerd op
fasemetingen van verschilsignalen geven in theorie en praktijk een betere lokalisa-
tienauwkeurigheid. Hoewel de aanpak effectief en uniek is, hadden eerdere
metingen in een andere frequentieband de effectiviteit van deze complexe en
nauwkeurige lokalisatietechniek al bewezen. Onze experimenten in een vrije
buiten-omgeving laten nauwkeurigheden zien in de orde van decimeters. The-
orie en praktijk laten echter zien dat deze aanpak geen betrouwbare lokalisatie
binnenshuis kan opleveren.

Onze laatste uitdaging werd om een nauwkeurige lokalisatie zowel binnen
als buiten te verkrijgen. Daar in het verre veld van elektromagnetische straling
ruimte en tijd verbonden zijn met de constante lichtsnelheid, wordt door het
uitvoeren van metingen over het ruimtedomein de grote ruimtelijke spreiding
in dynamische binnen-omgevingen bepaald. We noemen deze aanpak “space-
based RSS”. Het is een eenvoudige en relatief goedkope techniek, waarbij de
theoretische ondergrens van de meetnauwkeurigheid wordt bepaald door de
diffractie aan de buitengrens van het lokalisatieoppervlak. Deze lokalisati-
etechniek levert in vrije buitenomgevingen dezelfde nauwkeurigheid op als op
fase- en TOF-gebaseerde technieken. Binnenshuis blijkt space-based RSS echter
deze beide andere technieken ver achter zich te laten in nauwkeurigheid.

In theorie wordt het oplossende vermogen van het verre veld bepaald door
het quotiënt van golflengte en de buitengrens van het lokalisatieoppervlak.
Deze buitengrens wordt bepaald door het ruimtelijk filter dat toegepast wordt
op ons kalibratievrije lokalisatiesysteem. Uiteindelijk is het daarom niet ver-
rassend, dat die buitengrens de ondergrens van de lokalisatienauwkeurigheid
bepaalt in een omgekeerd evenredigheidsverband. Dergelijke verbanden wor-
den uitgedrukt als onzekerheidsrelaties voor Fourier-geconjugeerde golfpa-
rameters of door het gelijkwaardige Cramer-Rao-Lower-Bound principe. Voor
het eerst vergelijkt dit onderzoek deze ondergrenzen die behaald worden door
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de verschillende lokalisatietechnieken, zowel in theorie als praktijk, en zowel
in binnen- als buitenomgevingen. Daar alle metingen met de verschillende
lokalisatiesysteemtypes binnen ons laboratorium zelf verricht zijn, laat dit weinig
twijfel over de validering van deze theoretische vergelijking met de praktijk.
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CHAPTER 1

Introduction

My journey into the field of radio localization started with studying the origi-
nal work and patents of Loran ([2]) and Decca ([3]). These early contributions
from the 1940s already revealed that radio waves can be used as a measure of
distance to locate unidentified objects in the lost space of naval and air defense
systems. Combining ideas from these early contributions resulted in the Global
Positioning System (GPS), which is probably the most well-known localiza-
tion system nowadays. GPS receivers at unknown positions measure Time-Of-
Flight (TOF) in Line-Of-Sight (LOS) from an array of transmitting satellites at
known positions. One can calculate the traveling distance of the waves, as the
constant speed of light connects traveling time with traveling distance when
transmitter en receiver are in LOS. The localization performance of the radi-
ation equals the inverse of the natural bandwidth of the radiation times the
speed of light. The natural bandwidth of the radiation is a function of the Q-
factor of the resonators. The localization performance of GPS is of the order of
several meters when there are four or more Satellites in LOS.

Our research theoretically and experimentally investigates the resolving
power and robustness of RSS-, TOF- and phase-based localization systems op-
erating in the far field of 2.4GHz Commercial-Off-The-Shelf (COTS) radios. We
only compare localization systems operating at 2.4 GHz and exclude frequency-
specific advantages that may be present in other frequency bands. The 2.4 GHz
band is a globally free band, which enjoys the interest of many industrial ap-
plications such as Wi-Fi, Bluetooth and 802.15.4.

Localization performance of localization systems is fundamentally deter-
mined by the resolving power of the radiation. Resolving power is defined as
the lower bound (smallest measurable quantity) divided by the upper bound
(measuring range). This ratio equals to the inverse of the effective number of
measurements. In the far field, the resolving power in time, frequency and
space domains are interchangeable as long as the effective number of measure-
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ments is equal and as long as the receivers are in LOS of the transmitters.
Chapter 2 presents a novel connectivity-based localization system that in-

creases the resolving power by measuring connectivity to neighboring radios
([17], and [37]). In this case, the resolving power depends on the spatial density
of radios, which is an unwanted property when this density increases.

The robustness for the spatial dispersion of the environment depends on
how well propagation models can account for hardware variations of antennas
and spatial and temporal variations of the environments. Chapter 3 introduces
a novel technique for the automatic and optimal calibration of RSS-based local-
ization systems ([34], [35] and [40]). This novel technique performs the calibra-
tion of the propagation model so fast that temporal changes in the environment
can be neglected as spatial variations are practically instantaneously accounted
for.

In Chapter 4, we design and implement a novel phase-based localization
system that does not require calibration and is implementable on most COTS
radios ([32] and [38]). We call this localization system SRIPS. To our knowl-
edge, this is the only phase-based localization system that operates on 2.4 GHz
COTS radios. The resolving power of these types of phase-based localization
systems depend on the coherence between two autonomous transmitters.

In Chapter 5, we design and implement a novel space-based RSS localiza-
tion system that increases the resolving power by using a mobile node with
unknown positions while it meanders over localization space. We theoretically
show that RSS-, phase- and TOF-based localization systems can be designed
to provide similar resolving powers. Our measurements with our space-based
RSS localization system, SRIPS ([38]) and TOF-based localization system ([46])
in a 20×20 m2 LOS outdoor environment verify this design opportunity. Such
localization systems all show a localization performance in the order of several
decimeters, as long as the nodes remain in LOS.

In Non-Line-Of-Sight (NLOS) indoor environments, the localization perfor-
mance depends on whether the spatial variation of the far fields in NLOS from
the nodes still has sufficient resolving power to provide adequate localization
performance. From a theoretical point of view, one would expect that to be the
case, as the resolving power of incoherent radiation should be determined by
Rayleigh’s diffraction limit ([17]). The resolving power of coherent radiation
is roughly a factor of two better and is determined by the Shannon-Nyquist
sample theorem. Chapter 5 shows that performing measurements in the space
domain rather than in the time domain indeed enable standard gradient search
algorithms to localize the nodes in NLOS dynamic indoor environments with
a high degree of spatial dispersion. Our far-field measurements in a 40x15 m2
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NLOS indoor office environment verify and show that our space-based RSS
localization system provides a robust localization performance of 1 meter and
outperforms existing SRIPS ([38]) and TOF-based ([46]) localization systems.
This one-meter localization performance is not yet the theoretical lower bound
of Rayleigh’s diffraction limit, as the effective number of measurements has
not yet been reached in our setup. This result is close enough to provide justi-
fication for the theoretical model used.

In summary, RSS-, phase- and TOF-based localization can be designed to
provide similar resolving powers in outdoor LOS environments as we show in
theory and practice. These localization techniques differ in robustness for spa-
tial and temporal environmental influences. Only our space-based RSS does
not leave the user lost in space in environments with a high degree of spatial
dispersion such as NLOS indoor office environments.

1.1 Challenges and Goals

This research aims to strike a balance between theory, experiments and applica-
bility. This means that we try to achieve the theoretical limits, verify these the-
ories with experiments, and use these theories in a practical implementation.
Practical means that our findings are competitive and applicable in industrial
applications.

Our main goal and challenge is to theoretically and experimentally analyze
the various localization systems operating in the far field. We aim to use these
theories to design, develop and implement localization systems. We consider
the most important performance metrics as:

• Localization Performance
We define localization performance as the measured positioning error in
an ideal environment, in which the propagation model matches the envi-
ronment. We measure performance in outdoor LOS environments.

• Robustness to Environmental Influences
We measure the robustness to static and dynamic environmental influ-
ences by measuring the positioning error in (NLOS) indoor environments.
A relatively high performance in outdoor environments does not neces-
sarily imply a relatively high performance in indoor environments (Chap-
ter 5). Robustness to environmental influences is an important criterion
in indoor localization.
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• Low Deployment and Maintenance Costs
Most localization systems require an extensive calibration phase to ac-
count for environmental influences and individual hardware differences
before and during localization. The calibration costs increase with in-
creasing localization area and increasing amount of radios. These costs
determine the scalability and thus applicability of a localization system,
especially in dynamic environments with a large amount of radios.

• Implementable on readily available radio platforms
Our system should be implementable on most COTS radio platforms.
This significantly lowers certification and production costs and may fa-
cilitate a relatively short time-to-market.

In addition to this list, energy consumption and scalability are important
design requirements for localization systems. First, our nodes with unknown
positions are battery-powered. This means that lower energy consumption im-
plies longer life times. Secondly, we strive for high scalability of our localiza-
tion systems, which usually determines the maximum number of nodes that
can be localized per unit time. Energy consumption and scalability require-
ments both depend on the envisioned application, communication protocol
and radio platform. These latter criteria are not on our list and are only ad-
dressed in some detail.

1.2 Hypothesizes

On the basis of our challenges and goals, we make the following four hypoth-
esizes regarding RSS-based localization:

1. Localization performance in the far field of incoherent multiplexed sig-
nals is bounded by the wavelength of the radiation. Sampling beyond
this lower bound does not improve localization performance.

2. Calibration-free localization systems can provide similar performance as
optimally calibrated localization systems.

3. RSS-based localization systems using narrowband signals can be designed
to provide similar performance in LOS environments as phase- and TOF-
based systems.
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= Reference nodes

= Blind nodes

Figure 1.1: Typical localization set-up

4. Space-based RSS localization systems provide better robustness to envi-
ronmental influences than other localization systems operating in the far
field.

1.3 Related Work

Figure 1.1 shows a typical localization set-up. This set-up consists of four fixed
radio beacons called reference nodes that transmit the required signals for lo-
calization. In this setup, the four reference nodes are located at the four corners
of the localization area. Blind nodes do not know their locations and posi-
tion themselves using the received signals from the reference nodes. In the far
field, the measured signals are a function of the wave parameters time, posi-
tion, temporal frequency and spatial frequency. Localization systems estimate
blind node positions by measuring these wave parameters from sampling ra-
dio signals over space, time, or phase domains. We identify three localization
systems based on how the measurements deal with these wave parameters:
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• Received Signal Strength-based (RSS-based) localization

• Time-Of-Flight-based (TOF-based) localization

• Phase-based localization

We identify four types of RSS-based localization approaches: range-,
sequence-, connectivity- and fingerprinting-based localization. Range-based
localization assumes that RSS is a function of distance ([4]). This function con-
verts the RSS measurements to distance estimates, which are used to estimate
the position ([13]). Sequence-based localization assumes that RSS decays over
distance without assuming that the RSS decay is described by a certain func-
tion. Sequence-based localization systems only use the ordered sequence of
RSS measurements ([12] and [18]). Connectivity-based localization assumes
that the packet delivery rate is a function of distance. This type of system only
uses connectivity information depending on whether a packet is received or
not. Connectivity-based localization suffers from the same fading effects as
the other types of RSS-based localization systems, because connectivity mea-
surements are a binary quantization of RSS measurements ([14]). Therefore,
connectivity-based localization systems are less accurate than the other types
of RSS based localization systems. Fingerprinting-based localization systems
assume that RSS is a function of position (e.g. [5] and [26]) instead of being a
function of distance.

These RSS-based localization systems are implementable on most COTS 2.4
GHz platforms. They differ in performance/robustness and deployment/
maintenance costs. Range- and connectivity-based localization both assume
that the RSS decay is described by a function. We use the Log-Normal Shad-
owing Model to describe the RSS over distance decay ([4]). This model has
two wave parameters as independent variables that account for environmental
influences and hardware differences. Conventional range- and connectivity-
based localization systems calibrate this model by performing calibration mea-
surements before deployment ([6] and [14]). Such an approach cannot cope
with spatial dispersion that influences the RSS measurements like passing hu-
man beings. Fingerprinting-based localization systems can calibrate for such
effects when these effects are static. In other words, fingerprinting-based lo-
calization systems are more robust for static environmental influences than
conventional range- and connectivity-based localization systems. In case of
dynamic environmental influences, range-based localization systems perform
better than fingerprinting-based localization systems ([34]). Fingerprinting-
based localization systems require significantly more calibration measurements
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than conventional range- and connectivity-based localization systems ([35]).
Conventional range-based localization systems provide the same performance
as fingerprinting-based localization systems in LOS environments ([35]).
Sequence-based localization systems do not require calibration. Their perfor-
mance is less than the other calibrated localization systems ([34]). Table 1.1
shows the performances of the four RSS-based localization systems.

We identify two COTS TOF localization systems in the 2.4 GHz band:
hardware-supported TOF and not-hardware-supported TOF systems. On most
radio platforms, radios are available that have a TOF engine, like the 802.15.4
platform ([44]), the Wi-Fi platform ([45]), and the 802.15.4a platform ([46]). We
compare our localization systems to radios that implement the 802.15.4a plat-
form ([46]). The signal modulation in the 802.15.4a standard is specifically de-
signed for high-performance and robust ranging. It uses the entire 80 MHz
bandwidth at 2.4 GHz, and the ranging performance increases linearly with
the bandwidth (Chapter 5). The signal modulation in the 802.15.4 and the Wi-
Fi standards is not specifically designed for ranging and uses less bandwidth
than the 802.15.4a standard. 802.15.4a radios provide adequate ranging and lo-
calization performance in outdoor LOS environments. However, NLOS rang-
ing decreases the performance significantly ([39]). We verify this with our own
experiments in Chapter 5. In case of not-hardware-supported TOF, two radios
transmit an extensive amount of messages hence and forth and measure TOF
([36] and [41]). The advantage of this approach is that it can be implemented
on most COTS radios without a TOF engine. However, it requires an extensive
amount of time and messages in comparison with the hardware-supported
TOF radios, and it performs less. We do not consider this TOF system in our
research. Table 1.1 shows the performance of the 802.15.4a radios.

There is one COTS phase-based localization system available at 2.4 GHz,
which we present in Chapter 4 called SRIPS ([38]). This system is based on
work presented in [19]. SRIPS relies on two independent senders, transmitting
unmodulated carrier waves at slightly different frequencies. The frequency
difference generates a frequency beat signal at the receiving antennas, which
is measured by two independent receivers. The measured phase difference be-
tween the receiver pairs is a function of the distances between the senders and
receivers involved. Our study shows that SRIPS provides similar performances
as TOF in outdoor environments, but it cannot provide reliable localization in
NLOS indoor environments.
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Table 1.1: Performance Localization Systems

Localization Performance Robust Calibration
System LOS outdoor NLOS indoor Costs
Fingerprinting + - - - -
Range + - -
Sequence - - +
Connectivity - - -
TOF ++ - +
COM-LOC++ + + -
Self-Adaptive + + +
SRIPS ++ - +
Space-Based ++ ++ -

1.4 Contributions

We consider our five main contributions in the order of appearance:

Connectivity-Based Localization
We introduce a new distributed connectivity-based localization system that provides
similar or better results than RSS-based shortest distance localization systems, espe-
cially in harsh environments. Table 1.1 shows the performance of COM-LOC++.
We assume that COMLOC++ is calibrated before deployment. COM-LOC++
provides similar results as shortest distance RSS- and range-based localiza-
tion systems in an ideal outdoor environment. In harsh environments, COM-
LOC++ outperforms these RSS-based localization systems.

RSS-Based and Calibration-Free Localization
We present the constraints under which calibration-free localization systems provide
similar or better results than calibration-extensive localization systems. Table 1.1
shows the performance of these calibration-free localization systems, which
we call Self Adaptive Localization (SAL) systems. SAL estimates the parame-
ters of the Log-Normal Shadowing model on-the-fly and does not require any
calibration before deployment. In a static environment, it provides similar re-
sults as the RSS- and range-based localization systems. In a dynamic envi-
ronment with unknown antenna orientations, it outperforms its conventional
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range-based counterpart.

Phase-Based Localization operating on COTS 2.4 GHz Radios
We present a Radio Interferometric Positioning System that is implementable on any
radio platform, which we call SRIPS. Table 1.1 shows the performance of SRIPS.
SRIPS does not require any calibration. In an outdoor LOS environment, it
provides the same performance as the 802.15.4a TOF localization system. In an
indoor environment, it cannot provide reliable localization results.

A New High-Performing Robust RSS-based Localization System
An RSS-based localization system that provides similar performance and better robust-
ness than other 2.4 GHz RSS-, TOF- and phase-based localization systems. We call
this localization system space-based RSS. Table 1.1 shows the performance of
space-based RSS. We assume that the optimal calibration settings are known
before deployment. In an outdoor LOS environment, it provides similar re-
sults as SRIPS and the 802.15.4a TOF localization system. In an NLOS indoor
environment, it outperforms the other localization systems.

Analyze and Compare Localization Systems operating in the Far Field
We theoretically and experimentally show that TOF-, phase- and RSS-based localiza-
tion systems can be designed to provide the same localization performance in LOS
outdoor environments.

In the first three chapters of this research, we focus on individual localization
systems. These localization systems are in order of appearance: Connectivity-
, RSS- and Phase-based localization. In the last chapter, we theoretically and
experimentally connect the localization systems and describe our space-based
RSS localization system.
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CHAPTER 2

A Distributed Connectivity-Based

Localization System

This chapter introduces a novel distributed connectivity-based localization sys-
tem in wireless sensor networks. This novel system uses a flooding proto-
col that is commonly employed by distance-based localization systems to de-
termine the shortest (hop) distance. We call this localization system COM-
LOC++. Our approach is new in that we optimize the localization performance
for this communication protocol. We exploit a certain part of the information
in the protocol that other localization systems consider as redundant or false.
In addition, we process the information from all heard reference nodes to esti-
mate the distance to one reference node. Our simulations show that this infor-
mation increases the localization performance by 15% to 65% and increases the
localization stability by 40% to 65% compared with existing connectivity- and
RSS-based research using the same communication protocol.

1

2.1 Introduction and Related Work

In recent years, there is a growing interest in locating devices in wireless com-
munication networks. Several of these localization systems are based on con-
nectivity measurements ([5], [6], [8], [9], [11], [12], [13]). Connectivity informa-
tion can be obtained with no additional hardware and minimum energy costs.
Although other localization systems can be more accurate than connectivity-
based localization systems, such localization systems often require specialized
hardware or specialized network setups (e.g. TOF, AOA and TDOA) that are
not commonly available in wireless communication networks. The localization

1This chapter is partially published in [17] and [19].
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performance of these other techniques can be enhanced by processing connec-
tivity information (as in [15]). Hence, connectivity-based localization is still an
attractive field of research.

We compare our connectivity-based localization system to three types of
RSS-based localization systems: range- ([13] and [16]), proximity- ([6] and [14])
and connectivity-based ([5], [9], [11] and [12]) localization. Existing connectivity-
based localization systems assume that the transmission range is constant (so
called unit disk model, [11]) or that the deployment distribution is a priori
known ([5], [9] and [12]). This means that the performance depends on the dif-
ference between the expected and measured values of the transmission range
and deployment distribution. We use the Log-Normal Shadowing Model to
model connectivity.

Most existing localization systems in wireless networks are designed with
the assumption that certain localization specific information is available. Af-
terwards, a communication protocol is designed to obtain this information.
We do it the other way around. We design a distributed connectivity-based
localization system on the basis of a communication protocol commonly em-
ployed by localization systems (as in [5], [9], [11], [12] and [15]). We construct
the Maximum Likelihood Estimator (MLE) for localization on the basis of the
communication protocol. Theoretically, this maximum likelihood estimator
should provide optimum localization results for a given communication proto-
col. We present a new localization system called COM-LOC++. COM-LOC++
processes information that other systems consider as redundant or false infor-
mation. In addition, it processes the information from all heard reference nodes
to estimate the distance to one reference node.

This chapter is organized as follows. After the problem formulation in Sec-
tion 2.2, Section 2.3 describes the propagation model to simulate connectivity.
Section 2.4 shows how COM-LOC++ converts the information obtained dur-
ing the communication phase into distance estimates and associated probabil-
ity distributions. Section 2.5 provides a description of COM-LOC++. Section
2.6 numerically analyzes the localization performance of COM-LOC++. In ad-
dition, this section compares COM-LOC++ with ecolocation ([14]) and a modi-
fied version of the MLE described in [13]. Section 5.7 presents the conclusions.

2.2 Problem Formulation

This section provides a formal description of the connectivity-based localiza-
tion problem using the flooding communication protocol. First consider a wire-
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less network that consists of two types of nodes:

• Reference nodes: reference nodes know their position in advance.

• Blind nodes: blind nodes do not know their location and require localiza-
tion.

We address the problem of blind node localization on the basis of connectiv-
ity measurements using a communication protocol called sum-dist ([7]). First,
each reference node broadcasts a message with its position and hop distance
set to one. Each receiving blind node stores the received reference node’s po-
sition and hop count. The hop distance is increased by one and the message is
forwarded. This ends the communication phase. We keep the communication
costs at the minimum for localization functionality in mobile wireless networks
([11]). At the end of the communication phase, blind nodes have the following
information:

1 A set of reference node positions that are one-hop-away (set S). We rep-
resent this set by: S ⊆ R. R is the set of heard reference nodes.

2 A set of reference node positions that are two-hops-away (set T ). We
represent this set by: T ⊆ R.

3 The number of received messages from other blind nodes per reference
node (nrref). We represent this number by: nrref and ref ∈ R.

4 The number of received messages from other blind nodes. We represent
this number by: nrtotal.

We use these information components throughout this chapter. Most existing
distributed connectivity-based localization algorithms, that use this communi-
cation protocol, only evaluate the shortest hop count for localization ([5], [9],
[11] and [12]). Figure 2.1 shows an example of sum-dist. The black circles
represent the nodes; r1 represents a reference node and b1 . . . b4 represent the
blind nodes. The solid and broken lines represent the communication links.
The text above the communication links shows whether the received messages
are processed by existing algorithms. The number of hops indicates how many
hops the blind node is away from the reference node. COM-LOC++ uses two
types of messages that are not used by existing distributed connectivity-based
algorithms:
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Figure 2.1: COM-LOC, communication phase

• “Redundant information”: the messages from b1 . . . b3 all indicate that b4
is two-hops-away from reference node r1. Therefore, two of these mes-
sages are considered redundant. Note that nrref = 3.

• “False information”: the messages from b1 . . . b2 to b3 indicate that b3 is
two-hops-away from reference node r1, while the shortest hop-distance
is one-hop. Hence, these messages are considered as false information.
Note that nrref = 2.

This means that many received messages are considered useless and are dis-
carded. The main difference with shortest-hop localization algorithms is that
COM-LOC++ processes these messages in order to increase the localization
performance without increasing the communication costs. Figure 2.2 shows an
example of what type of extra information COM-LOC++ processes for node b4:

• nr1 = 3: node b4 receives messages from r1 via nodes b1 . . . b3.

• nr2 = 3: node b4 receives messages from r2 via nodes b1 and b5 . . . b6.

• nrtotal = 5: node b4 receives messages from nodes b1 . . . b3 and b5 . . . b6.
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Figure 2.2: COM-LOC++, communication phase

This means that node b4 does not receive messages from 2 nodes for reference
nodes r1 and r2 (nrtotal−nr1 = nrtotal−nr2 = 2). In other words, b4 is in trans-
mission range of 5 blind nodes AND the reference nodes are NOT in trans-
mission range of two of these nodes. COM-LOC++ uses this information to
improve localization performance. Note that shortest-hop distance algorithms
only process information components 1 and 2, COM-LOC++ also evaluates in-
formation components 3 and 4. Section 2.4 describes how this information is
processed.

2.3 Connectivity Model

We adopt the Log-Normal Shadowing Model for modeling the signal strength
over distance decay ([1]). Empirical studies support the application of this
model in indoor and outdoor environments ([2] and [18]). In the next chap-
ter, we numerically and experimentally verify that this model can be applied
to our localization system. The following formula represents the Log-Normal
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Shadowing Model:

Pd = Pd0 − 10 · n · log10(
d

d0
) +XσdBm

(2.1)

Here Pd represents the received signal power in dBm at distance d; Pd0
rep-

resents the received signal power in dBm at reference distance d0; n represents
the path loss exponent, representing the rate at which the path loss increases
with distance; Xσ represents the error of the Log-Normal Shadowing Model
and follows a zero-mean normal distribution with variance σ2

dBm.

We use the Log-Normal Shadowing Model for estimating the packet deliv-
ery rate as a function of distance. Usually, connectivity is determined by an RSS
threshold (like in [13]). The following formula computes the packet delivery
rate as a function of distance:

P (B hears A|dA,B) = 1− cdf(thres, Pd, σ
2
dBm) (2.2)

Here P (B hears A|dA,B) represents the probability that receiver B receives a
message from transmitter A at distance dA,B . We calculate this probability us-
ing the cumulative distribution function of the normal distribution. The proba-
bility depends on the distance between transmitter A and receiver B. Therefore,
the probability is a function of the coordinates of transmitter A and receiver B:

P (B hears A|d) = P
(
(xA, yA), (xB , yB)

)
(2.3)

Here (xA, yA) and (xB , yB) represent the x- and y-coordinates of transmit-
ter A and receiver B. We use this notation throughout this chapter. Note that
the parameter settings of the Log-Normal Shadowing Model (Pd0 , n and Xσ)
influence the packet delivery rate over distance. For simplicity, we assume that
these parameters are known a priori as in most connectivity-based algorithms.
The values of these parameters could be determined by performing calibration
measurements ([13]).

2.4 Estimating Distances and Probabilities

This section shows how COM-LOC++ converts the information obtained dur-
ing the communication phase (Section 2.2) into distance estimates and associ-
ated probabilities using the Log-Normal Shadowing Model described in Sec-
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tion 2.3. The estimates and associated probabilities are used for estimating the
position of the blind node.

2.4.1 One- and Two-Hop-Away Reference Nodes

For completeness, we show how we convert information components 1 and 2
into a probability over distance distribution. We use Equation 2.3 to calculate
the probability over distance distribution that blind node B hears reference
node A:

P (B hears A|dA,B) (2.4)

We use Equation 2.4 to calculate the probability over distance distribution that
blind node B does not hear reference node A (two-hop-away reference node
information):

P (B does not hear A|dA,B) = 1− P (B hears A|dA,B) (2.5)

2.4.2 Communication via Blind Nodes

We are interested in the probability that reference node A can communicate
indirectly with blind node B via nrref blind nodes as a function of the distance
between reference node A and blind node B (information component 3 defined
in Section 2.2):

P (B hears A via nrref nodes|dA,B) (2.6)

Before we calculate the probability distribution associated with Equation 2.6,
we first calculate the probability distribution involving one blind node. We call
this blind node C:

P (B hears A via 1 blind node|dA,B) =∫ ∞

−∞

∫ ∞

−∞
P
(
(xA, yA), (xC , yC)

)
· P

(
(xC , yC), (xB , yB)

)
dxCdyC (2.7)

Here (xA, yA) is the position of reference node A, (xB , yB) is the position of
blind node B, (xC , yC) is the position of blind node C that forwards the broad-
casted message of the reference node. For simplicity, we set the reference
node position to (xA = 0, yA = 0). We set the position of blind node B to
(xB = dA,B , yB = 0). The position ((xC , yC)) of blind node C is unknown,
so we have to accumulate the probabilities over the localization space where
blind node C resides. As nodes A and B can have arbitrary positions, this does
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Figure 2.3: Monte Carlo Simulations: Position and Distance Distribution

not change the probability over distance distribution. Equation 2.7 does not
normalize the probabilities, as we are only interested in the probability distri-
butions and not in the absolute probabilities.

To our knowledge, Equation 2.7 does not have a closed-form solution. We
approximate the probability over distance distribution using Monte Carlo Sim-
ulations (MCS). The MCS represent the position distribution of blind node C by
drawing samples. We implement a grid-based sampling approach to ensure an
uniform distribution and thus an equal influence per square meter on the final
probability over distance distribution. Blind node C lies within transmission
range from node A, so that we draw samples that lie within the transmission
range from node A. We represent this set of possible blind node positions by:
FORW. Figure 2.3 shows an example of an implementation of the MCS. The
distance distribution of blind node B is represented by circles, and the position
distribution of blind node C is represented by crosses.

We use Equation 2.2 for estimating probabilities between individual sam-
ples:
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P (B hears A via C ∈ FORW|dA,B) =

P (C ∈ FORW hears A|dA,C) · P (B hears C ∈ FORW|dC,B) (2.8)

Here, C is a possible blind node position and an element in FORW. We use
Equation 2.8 for estimating the probability that blind node B hears reference
node A via one blind node (Equation 2.7):

P (B hears A via FORW |dA,B) =
∑

C∈FORW

P (B hears A via C ∈ FORW|dA,B)

(2.9)
We use Equation 2.9 for estimating the probability that blind node B hears

reference node A via nrref blind nodes (Equation 2.6):

P (B hears C via nrref nodes|dA,B) =
nr∏
i=1

P (B hears A via FORW|dA,B) (2.10)

2.4.3 Heard and Not Heard Blind Nodes

Information component 4 is described by:

P (B did NOT hear A via nrtotal − nrref nodes|da,b) (2.11)

Note that the probabilities defined in Equations 2.6 and 2.11 are independent.
Hence, both information components are processed by multiplying the calcu-
lated probabilities. We use a similar method as described in the previous sec-
tion to approximate this probability. We draw samples (Monte Carlo Simula-
tions) as shown in Figure 2.3 to represent the position and distance distribution.
We use Equation 2.2 for estimating probabilities between individual samples:

P (B did NOT hear A via C ∈ FORW|dA,B) =

P (C ∈ FORW did NOT hear A|dA,C) · P (B hears C ∈ FORW|dC,B) (2.12)
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We use Equation 2.12 for estimating the probability that blind node B did not
hear reference node A via one blind node:

P (B did NOT hear A via FORW|dA,B) =∑
C∈FORW

P (B did NOT hear A via C ∈ FORW|dA,B) (2.13)

Note that we assume that blind node B hears blind node C via another ref-
erence node than reference node A. We use Equation 2.13 for estimating the
probability that blind node B did not hear reference node A via nrtotal − nrref
blind nodes (Equation 2.11):

P (B did NOT hear A via nrTOTAL − nrref blind nodes|dA,B) =
nr∏
i=1

P (B did NOT hear A via FORW|dA,B) (2.14)

Hence, we assume that the calculated probabilities are independent. Figure 2.4
shows Equation 2.14 as a function of the distance between reference node A
and blind node B for the following Log-Normal Shadowing Model parameter
settings: n = {3.5}, σdBm = {6} and Pd0 = {−40} and different nrTOTAL and
nrref settings.

2.4.4 Final Probability over Distance Distribution

We assume that the calculated probabilities associated with information com-
ponents 1 . . . 4 are independent. Hence, the final probability over distance dis-
tribution is calculated by multiplying these probabilities:

• one-hop-away reference nodes (s ∈ S):

P (B hears s ∈ S|ds,B) · P (B hears s via nrref blind nodes|ds,B)·
P (B did NOT hear s via nrTOTAL − nrref blind nodes|ds,B) (2.15)

• two-hops-away reference nodes (t ∈ T ):

(1− P (B hears t ∈ T |dt,B)) · P (B hears t via nrref blind nodes|dt,B)·
P (B did NOT hear t via nrTOTAL − nrref blind nodes|dt,B) (2.16)
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Figure 2.4: Example Probability over Distance Distribution

The required computations, described in Sections 2.4.1, 2.4.2 and 2.4.3 are too
expensive to run on a blind node with limited computational capabilities. We
calculate the outcome of Equations 2.4, 2.9 and 2.13 (for nrref = 1) before de-
ployment. Blind nodes store the results of these calculations in a table with
a user defined distance resolution. This implementation strategy significantly
reduces the computational complexity, being linear for the required computa-
tions on the blind node. [16] calculates similar probabilities for an RSS range-
based localization system. In this case, the blind nodes calculate the proba-
bilities and the computational costs increase exponentially with an increasing
number of heard nodes.

2.4.5 Numerical Analysis and Discussion

Increasing the number of heard and not heard nodes makes the probability
over distance distribution steeper. Figure 2.4 shows two illustrations of this
observation. A steeper probability distribution means that the distance esti-
mate becomes more accurate. The number of heard and not heard blind nodes
depends on the node density within a wireless network. Hence, the localiza-
tion performance increases with increasing node density, which is verified in
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Section 2.6.

2.5 Connectivity-based Localization Algorithm

This section describes how COM-LOC++ estimates a position using the prob-
ability over distance distributions described in Section 2.4. As in [11], COM-
LOC++ implements a grid-based Monte Carlo Localization approach. An
overview of Sequential Monte Carlo methods can be found in [4]. COM-LOC++
consists of two phases:

• The “prediction phase” draws samples that represent the position distri-
bution.

• The “filtering phase” weights the samples drawn in the prediction phase
in line with the observations.

COM-LOC limits the x- and y-coordinates of the position distribution on the
basis of the calculated probability over distance distributions. We use this in-
formation to make a bounding box (as in [7]) and to keep the computational
costs as low as possible. In the prediction phase we draw samples within the
bounding box. After the prediction phase, we filter and weight the samples by
multiplying the computed probabilities as described in Section 2.4.

2.6 Simulations

This section analyzes the localization performance of COM-LOC++. In addi-
tion, we compare COM-LOC++ with COM-LOC([17]), ecolocation ([14]) and
a modified version of the MLE described in [13] and [17]. Ecolocation only
processes one-hop information, so that it requires less communication than the
other localization systems. We do not consider known connectivity-based lo-
calization systems such as DV-HOP ([5]), because they cannot cope with the
varying transmission ranges introduced by the Log-Normal Shadowing Model
([17]).

2.6.1 Set-up

The set-up parameters are:

• The surface area is 100× 100 m.
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Figure 2.5: Mean error as a function of σdBm

• The simulations simulate RSS by using the model described in Equa-
tion 3.1. In general, the following parameter values are used: {Pd0

=
−40 dBm, n = 3.5, σdBm = 6}.

• 36 reference nodes are randomly and uniformly placed over the surface
area.

• 400 blind nodes are randomly and uniformly placed over the surface
area.

• The localization performance is given as the mean over 25 runs.

2.6.2 Comparison with Other Localization systems

This subsection analyzes the performance as a function of σdBm, as σdBm de-
fines the performance of RSS-based localization systems. We express the per-
formance in terms of two statistical quantities:

• The average positioning error, which we define as the localization perfor-
mance.
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Figure 2.6: Standard deviation as a function of σdBm

• The standard deviation of the localization error, which we interpret as
the localization stability.

Typical values of σdBm are between 6 and 12 dBm ([2]). For completeness,
we evaluate the RSS-based localization systems with σdBm values between 4
and 12 dBm. Figures 2.5 and 2.6 show the localization error and stability as a
function of σdBm. These figures show that COM-LOC++ outperforms COM-
LOC and existing RSS-based localization systems in terms of localization per-
formance and stability:

• COM-LOC++ increases the localization performance by 30 . . . 50% and
the localization stability by 20 . . . 40% in comparison with COM-LOC.
These results clearly show that the extra information processed by COM-
LOC++ significantly increases the performance of COM-LOC.

• COM-LOC++ increases the localization performance by 15 . . . 65% and
the localization stability by 40 . . . 65% in comparison with DV-PAT and
ECOLOCATION. Note that DV-PAT and ECOLOCATION both use RSS
measurements, while both COM-LOC++ and COM-LOC only use con-
nectivity information.
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Figure 2.7: Mean error as a function of node density

Moreover, DV-PAT has 5 to 22% smaller localization error than COM-LOC with
small values of σdBm (σdBm = 4 to 6 dBm), nevertheless COM-LOC has a sig-
nificant better localization stability than DV-PAT with these small values of
σdBm (25 to 50%).

2.6.3 Node Density

This subsection analyzes the localization performance as a function of the blind
node density, as we expect that the node density influences the localization
performance of COM-LOC++ (Section 2.4.5). Figure 2.7 and 2.8 show this func-
tional dependence on the node density. These figures show that:

• The localization performance of COM-LOC++ increases with an increas-
ing node density. We refer to Section 2.4.5 for an explanation.

• The localization stability of COM-LOC increases with an increasing node
density.

• The localization performance of COM-LOC, DV-PAT and ECOLOCA-
TION remain more or less equal with increasing node density.
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Figure 2.8: Standard deviation as a function of node density

• The localization stability of DV-PAT and ECOLOCATION remain more
or less equal with increasing node density.

• DV-PAT performs slightly better than COM-LOC++ with a low node den-
sity (50 to 100 blind nodes).

In addition, these figures show that COM-LOC++ increases the localization
performance by 45% and increases the localization stability by 40% in a wire-
less network with a high node density.

2.7 Conclusion

We introduced a new distributed connectivity-based localization system called
COM-LOC++, which processes a new type of information. COM-LOC++ op-
timizes the localization performance for a communication protocol commonly
employed by localization systems called sum-dist. Simulations show that the
use of this new type of information increases the performance by 30% to 50%
relative to its predecessor. In addition, comparative simulations of COM-LOC++
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with two RSS-based localization systems show that COM-LOC++ performs 15
to 65% better than these localization systems over a wide range of conditions.
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CHAPTER 3

RSS-based Self-Adaptive Localization in

Dynamic Environments

This chapter focuses on optimal and automatic calibration of the propagation
model of Received Signal Strength (RSS) based localization systems. Conven-
tional RSS-based localization systems assume that optimal calibration of the
propagation model is hardware- and space-invariant, so that the propagation
model is identical for all nodes distributed over localization space. Such sys-
tems also assume that these calibration settings do not change between cali-
bration rounds. Real environments are dynamic and continuously changing.
In these environments, each individual node should estimate its own optimal
propagation model settings dependent on the node’s hardware and location.
We call this process Self-Adaptive Localization (SAL). SAL systems estimate
the parameter settings from available localization measurements. Such sys-
tems perform these localization measurements in the order of tens of millisec-
onds so that the environmental dynamics can be considered as static. We show
that existing SAL systems can be significantly improved in terms of localiza-
tion performance and stability. Our main contribution is that we determine
the conditions under which SAL systems provide such optimal calibration set-
tings each time an individual node localizes itself. Such conditions are shown
to be constraints on the localization surface and radiation conditions on all
nodes. As antenna orientations have a significant impact on RSS, we evaluate
SAL in an environment where each node has an unknown antenna orientation.
Our measurements and simulations show that our constrained SAL systems
increase the localization performance by roughly 65% and the localization sta-
bility by about 75% compared to the conventional approach where each node
has the same calibration settings.

1

1This chapter is partially published in [21], [22] and [25].



36 3 RSS-based Self-Adaptive Localization in Dynamic Environments

3.1 Introduction

In range-based RSS localization, the position estimate shows up as a parameter
in the propagation model. These propagation models are mathematical rep-
resentations of far-field solutions of the respective Navier-Stokes or Maxwell
equations, depending on whether the network is based on the propagation of
acoustic or electromagnetic waves. Mathematically, localization then reduces
to calculating the field energies at the unknown location of the receiving an-
tenna radiated from an antenna array at known positions. When the antenna
array is large enough and the propagation model adequately represents the ra-
diation in the environment, localization reduces to a set of non-linear equations
for the position estimates and possible other parameters used in the propaga-
tion model. These other parameters are aimed to account for reflection, refrac-
tion, diffraction, and absorption effects in the environment. RSS-based local-
ization usually employs the empirical Log-Normal-Shadowing model as the
propagation model ([1]).

We identify the following four RSS-based localization systems: fingerprint-
ing (e.g. [3]), range-based (e.g. [4]), range-free (e.g. [5]) and proximity-based
(e.g. [10]) localization. Recent studies show that range-based localization out-
performs other RSS-based localization systems in static LOS environments ([22]),
and provides similar results in environments with an unknown antenna ori-
entation ([21]). However, the current calibration approach cannot deal with
unknown variables that influence RSS ([21]). This chapter aims to resolve that
shortcoming.

3.1.1 Problem Description

This chapter deals with the general challenge of RSS-based localization systems
to properly account for the dynamic influence of the changing environment on
the signal strength. Propagation models used by RSS-based localization sys-
tems introduce parameters to capture environmental influences and hardware
differences. The performance of localization systems depends on how well
such parameters are able to capture these influences both locally and over time:

• How much do these calibration settings vary over localization space?

• How fast can calibration and localization measurements be taken relative
to the time of change of the environment?
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Several practical examples that show evidence of this influence on the prop-
agation model show up in the literature and are given below:

• Antenna orientation: [21] reports that the received signal strength may
vary a factor 32 under different antenna orientations (16 dBm).

• Elevation from ground: [15] reports that the signal strength may decay
17% faster at different elevated levels from the floor (6 to 30 cm elevation).

• Materials in environment: [15] reports that the signal strength may decay
32% faster with higher grass (6 to 30 cm grass).

Other examples that influence the signal strength are reflections, moving obsta-
cles, temperature and humidity. In this chapter, we focus on capturing the in-
fluence of unknown antenna orientations. We expect that other space-varying
influences, as mentioned in [15], can be captured in a similar matter. We as-
sume that these influences are static during the localization measurements as
the measurement time is in the order of tens of milliseconds.

In general, it is difficult to estimate the optimal parameter settings in an
automated way for each time a node localizes itself. In theory, the optimal val-
ues of these parameters depend on the locally varying electromagnetic permit-
tivity and permeability of localization space. In other words, the propagation
model needs to account for local changes in the localization environment. Con-
ventional RSS-based localization systems assume that there exists one optimal
propagation model that is identical for all nodes. In principle, such a uniform
propagation model cannot account properly for the local spatial influences in
the environment.

In a more realistic model, each node should estimate its own optimal pa-
rameter settings dependent on the node’s hardware and location. We call
this process Self-Adaptive Localization. SAL applies multivariate propagation
models, so that it adapts to the local spatial influences in the environment.
This chapter reviews and improves several new and existing distributed Self-
Adaptive Localization systems.

3.1.2 Conventional Versus Self-Adaptive Localization Approach

Conventional localization systems estimate the optimal values of the propa-
gation model parameters by performing calibration measurements (see Fig-
ure 3.1). The parameters calculated from calibration measurements are usu-
ally called “nuisance parameters” as they only serve to help estimating the
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Figure 3.1: Conventional Approach

unknown positions of the blind nodes. This calibration is said to take place in
the “Conventional Calibration Approach” phase. During the second phase, the
“Conventional Localization Approach” phase, the position of the blind node is
estimated using the calibrated nuisance parameters as well as the localization
measurements. The conventional localization approach characterizes itself by
the clear distinction between these two phases. Calibration measurements are
only used for calibrating the nuisance parameters; localization measurements
are only used for estimating the position. The clear separation of these two
phases implies that:

In conventional localization approaches, the optimal calibration settings do not
change locally and over time until the next calibration round.

Hence, the optimal calibration settings are assumed to be equal for each node
and static between calibration rounds. This holds in static environments.

In this chapter, we propose the “Self-Adaptive Localization (SAL) Approach”
(see Figure 3.2) that continuously adapts to a dynamic environment. The main
difference with the “Conventional Localization Approach” is that the “SAL
Approach” uses localization measurements for both estimating the “nuisance
parameters” as well as for estimating the position of the nodes (see “Estimate
nuisance parameter values” in Figure 3.2). This implies that the “SAL Ap-
proach” updates the calibration settings every time a node estimates its posi-
tion. As a result:
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Figure 3.2: SAL Approach

The SAL approach allows that the optimal calibration settings vary over space and
time, and are assumed to be static during the localization measurements.

The idea of estimating nuisance parameters on the basis of localization mea-
surements is not new in the field of RSS-based localization using radio signals
([13] and [16]) or acoustic signals ([9] and [17]). However, it has not been ap-
plied in dynamic environments. RSS-based localization measurements only
take milliseconds. Compared to the conventional approach, SAL requires less
or no online/offline calibration measurements. The broken grey line in Figure
3.2 indicates this improvement.

3.1.3 Contributions

The three main contributions of this chapter are:

1. This chapter contains a short review of existing RSS-based conventional
([8]) and SAL localization systems ([9], [13], [16], [17], [18] and [19]). We
analyze these localization systems and show their similarities and differ-
ences.

2. SAL systems estimate the propagation model settings using localization
measurements. In other words, SAL increases the number of unknowns
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while evaluating the same amount of measurements as conventional lo-
calization systems. We show that this decreases the localization perfor-
mance and stability. We analyze the behavior of existing SAL systems
and determine under which conditions these localization systems pro-
vide the best and most reliable results. We then apply these conditions
as constraints on the localization systems. These constraints limit the
boundaries of the localization surface by assuming that the blind nodes
are located within the convex hull of the reference node positions. This
constraint increases the localization performance by roughly ∼ 40% and
the localization stability by about ∼ 65% in static environments.

3. We evaluate the performance of existing and our constrained conven-
tional and SAL systems in an environment with unknown antenna orien-
tations. These measurements show that our constrained SAL systems in-
crease the localization performance by 65% and stability by 75% in com-
parison with an optimally calibrated conventional localization system.
In addition, our constrained SAL systems increase the localization per-
formance by 45% and stability by 70% in comparison with existing SAL
systems.

This chapter is organized as follows. After formalizing the localization
setup in Section 3.2, Section 3.3 classifies the conventional and SAL systems.
Section 3.4 describes how the constraints significantly improve the performance
of existing SAL systems. In addition, Section 3.4 compares the performance of
conventional and SAL systems. Section 3.5 summarizes the results.

3.2 Model Formulation and Setup

This section first provides a formal description of the localization setup. The
second section describes the model of the signal strength over distance de-
cay and its limitations. In addition, it describes the measurement setup used
throughout this chapter. The last section describes the model of the signal
strength over distance decay used in the field of acoustic signal-based localiza-
tion ([9] and [17]) and its similarity with the model used in radio signal-based
localization ([13], [16] and [19]).
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Figure 3.3: Measurement setup

3.2.1 Localization Definition

Consider a wireless network that consists of N reference nodes and M blind
nodes:

• Reference nodes know their positions in advance. We identify the posi-
tions of the N reference nodes by: (x1, y1) . . . (xN , yN ).

• Blind nodes do not know their locations and require localization. We
identify the positions of the M blind nodes by:
(xN+1, yN+1) . . . (xM+N , yM+N ).

Our aim is to position blind nodes using signal strength measurements from
several reference nodes. We do not evaluate signal strength measurements be-
tween blind nodes (like in [4] and [12]). We use the following variables to
identify individual nodes and RSS measurements:

• j represents the identification number of the jth blind node.

• i represents the identification number of the ith reference node.

• Pi,j represents the RSS measurement between reference node i and blind
node j.
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• Hj represents the set of reference nodes heard by blind node j. This set
consists of the identification numbers of these reference nodes.

Figure 3.3 shows the measurement setup. The nine triangles represent the ref-
erence nodes (N = 9); the 112 crosses represent the blind nodes (M = 112).

3.2.2 Log-normal Shadowing Model and Measurement Setup

We adopt the Log-Normal Shadowing Model (LNSM) for modeling the signal
strength over distance decay. This empirical model is widely used by RSS-
based localization estimators (e.g. [4], [12] and [14]) and has shown to be a
reasonable representation of reality ([2]). The Log-Normal Shadowing Model
assumes that RSS follows a log-normal distribution. A log-normal distribution
is a continuous distribution in which the logarithm of the variable follows a
normal distribution. This means that:

• The average received signal strength decreases logarithmically over dis-
tance.

• The received signal strength follows a normal distribution at a certain
distance.

The following formula represents the Log-Normal Shadowing Model ([1]):

Pd = Pd0
− 10 · n · log10(

d

d0
) +Xσ (3.1)

Here:

• Pd represents the received signal strength in dBm at distance d.

• Pd0
represents the received signal strength in dBm at reference distance

d0, which we call the “Reference RSS”. In general, d0 is relatively small.
For simplicity, we assume that d0 equals 1 meter (see [2]).

• n represents the Path Loss Exponent (PLE). The path loss exponent rep-
resents the rate at which the path loss increases with distance.

• Xσ represents the standard deviation of the received signal strength due
to shadowing effects and is invariant with distance ([2]). X follows a
zero-mean normal distribution with standard deviation σ:

X ∼ N(0, σ2) (3.2)
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Figure 3.4: Measurement environment Figure 3.5: radios

Even though this empirical model is widely accepted and has shown to be
useful, it is important to note that it has some limitations. Three major sources
of error are interfering effects, shadowing ([1]) and hardware inaccuracies ([6]
and [7]). Multiple signals with different amplitudes and phases add construc-
tively or destructively to the RSS, causing frequency-selective destructive and
constructive interference. The error caused by such interfering effects is usu-
ally minimized by performing RSS measurements over a relatively large fre-
quency band. The remaining errors in RSS measurements are caused by shad-
owing. Shadowing is the attenuation of a signal due to obstructions, also called
medium-scale fading ([1]).

We performed two sets of measurement rounds on each blind node loca-
tion (Figure 3.3) in which the blind node had a vertical or a horizontal antenna
orientation. Figure 4.13 shows the measurement environment. Figure 4.14
shows two CC2430 radios, equipped with standard 2.4 GHz dipole antennas
(e.g. [24], which shows a typical radiation pattern). One radio has a horizontal
antenna orientation and the other radio has a vertical antenna orientation. In
this measurement setup, the reference nodes have a vertical antenna orienta-
tion, and the blind node measures the RSS with a vertical and a horizontal an-
tenna orientation at the 112 blind node positions shown in Figure 3.3. Parallel
antenna orientations (vertical/vertical) optimize reception and perpendicular
or crossed antenna orientations (vertical/horizontal) minimize reception. Dur-
ing each measurement round, the blind node performs 100 consecutive RSS
measurements at 38 different frequencies in the 2406 . . . 2480 MHz band. The
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Figure 3.6: RSS over distance distribution

mean RSS over these 38 frequencies is used as input for the calibration phase
and localization systems. We perform RSS measurements over the total avail-
able free bandwidth in the 2.4 GHz to ensure optimal localization performance
(e.g. [20]). Figure 3.6 shows the Log-Normal Shadowing Model fitting these
RSS measurements. The red dots represent individual RSS measurements with
a vertical/vertical antenna orientation (best reception); the green dots repre-
sent individual RSS measurements with a vertical/horizontal antenna orienta-
tion (worst reception). There are three fits that minimize the squared residual
between the measured and estimated RSS using the Log-Normal Shadowing
Model:

• The curve that fits the measurements made with parallel antenna orien-
tations (vertical/vertical). The parameter values of this fit are: {Pd0

=
−21.6 dBm, n = 2.2, σdBm = 3.2 dBm}.

• The curve that fits the measurements made with perpendicular antenna
orientations (vertical/horizontal). The parameter values of this fit are:
{Pd0

= −37.6 dBm, n = 1.5, σdBm = 3.4 dBm}.

• The curve that fits all measurements. The parameter values of this fit are:
{Pd0 = −29.6 dBm, n = 1.9, σdBm = 5.9 dBm}.
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Figure 3.7: Error distribution, log-normal shadowing model

These parameters settings are used as the reference calibration settings through-
out this chapter.

Figure 3.7 shows the error distribution of the graph that fits all measure-
ments. Figure 6 shows that the error distribution consists of two normal distri-
butions. This is because the graph that fits all measurements fits two different
Log-Normal Shadowing models, each of which is identified by a certain an-
tenna orientation. The measurements verify that RSS is significantly decreased
by perpendicular antenna orientations, the reference RSS (Pd0

) is decreased by
a factor 32 (from -21.6 to -37.6 dBm). Moreover, the measurements show that
the path loss exponent is decreased by 30% (from 2.2 to 1.5).

3.2.3 Acoustic Signal Propagation

For comparison, we present the acoustic signal strength over distance decay
function used by SAL systems described in [9], [11] and [17]. The following
formula represents the acoustic power decay model:

Pd = 10 log

(
g · S
dn

+ εσ

)
(3.3)

Here:
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• S represents the transmission power in mW.

• g represents the gain of the microphones.

• εσ represents the error of the model. ε follows a μ-mean normal distribu-
tion with standard deviation σ:

ε ∼ N(μ, σ2) (3.4)

• [9], [11] and [17] assume that the path loss exponent equals n = 2.

For comparison, we rewrite the formula of the Log-Normal Shadowing Model:

Pd = 10 log

⎛
⎝10

Pd0
10

dn
· 10Xσ

10

⎞
⎠ (3.5)

We assume that 10
Pd0
10 = g · S. Hence, the main difference between the models

is the error distribution. In the next section, we compare the acoustic-based
SAL systems with the radio-based ones.

3.3 Maximum Likelihood Estimators

This section describes the Maximum Likelihood Estimators (MLE) of range-
based localization systems. We first formulate a general MLE using the Log-
Normal Shadowing Model ([4]). The MLE of a position estimate equals the
position estimate that maximizes the probability using the probability density
function of Equation 3.1. The MLE for blind node j equals:

max
θ

∏
i∈Hj

1

σ
√
2π

e
(Pi,j− ̂Pi,j)

2

2σ2 (3.6)

Here P̂i,j represents:

P̂i,j =Pd0
− 10 · n · log10(

di,j
d0

)

di,j =
√

(xi − x̂j)2 + (yi − ŷj)2
(3.7)

In Equation 3.6 and 3.7:



3 RSS-based Self-Adaptive Localization in Dynamic Environments 47

• di,j represents the distance between reference node i and the position
estimate of blind node j.

• θ is the set of parameters that maximizes the optimization function (Equa-
tion 3.6). Note that θ always contains the position estimate, this means
that: x̂j ∈ θ and ŷj ∈ θ.

The Log-Normal Shadowing Model assumes that the variance remains con-
stant over distance ([2]). Hence, after some algebra, Equation 3.6 reduces to:

min
θ

∑
i∈Hj

(
Pi,j −

(
Pd0

− n · 10 · log10(
di,j
d0

)

))2

=min
θ

∑
i∈Hj

(Pi,j − P̂i,j)
2

(3.8)

This equation represents the MLE in its most general form using the Log-
Normal Shadowing Model. Note that it does not define:

• The values of the reference RSS (Pd0
) and the path loss exponent (n). This

paper focuses on the calibration of these parameters.

• θ. In SAL implementations, the different definitions of θ define the dif-
ference between the conventional and SAL approach.

The following enumeration describes the MLEs of the conventional localiza-
tion approach and six implementations of the SAL approach:

The Conventional Localization Approach (LN-CON) assumes that the op-
timal values of the reference RSS (Pd0 ) and the path loss exponent (n) are
known before minimizing Equation 3.8 (as in [4]):

min
θ={x̂j ,ŷj |Pd0

=α,n=β}

∑
i∈Hj

(
Pi,j −

(
Pd0

− n · 10 · log10(
di,j
d0

)

))2

(3.9)

α (= Pd0
) and β (= n) are the calibrated values of the Log-Normal Shadowing

Model.
Reference RSS Self-Adaptive Localization (RR-SAL) estimates the refer-

ence RSS (Pd0 ) on the basis of the localization measurements. Contrary to the
conventional localization approach, RR-SAL assumes that the value of the ref-
erence RSS (Pd0

) is not known before minimizing Equation 3.8:

min
θ={x̂j ,ŷj ,̂Pd0

|n=β}

∑
i∈Hj

(
Pi,j −

(
P̂d0

− n · 10 · log10(
di,j
d0

)

))2

(3.10)



48 3 RSS-based Self-Adaptive Localization in Dynamic Environments

Path Loss Exponent Self-Adaptive Localization (PLE-SAL) estimates the
path loss exponent (n) on the basis of the localization measurements (as in [13]).
Contrary to the conventional localization approach, PLE-SAL assumes that the
value of the path loss exponent (n) is not known before minimizing Equation
3.8:

min
θ={x̂j ,ŷj ,n̂|Pd0

=α}

∑
i∈Hj

(
Pi,j −

(
Pd0

− n̂ · 10 · log10(
di,j
d0

)

))2

(3.11)

Log-Normal Self-Adaptive Localization (LN-SAL) estimates the reference
RSS (Pd0 ) and the path loss exponent (n) on the basis of the localization mea-
surements (as in [16]). Contrary to the conventional localization approach,
LN-SAL assumes that the value of the reference RSS (Pd0

) and the path loss
exponent (n) are not known before minimizing Equation 3.8:

min
θ={x̂j ,ŷj ,̂Pd0

,n̂}

∑
i∈Hj

(
Pi,j −

(
P̂d0 − n̂ · 10 · log10(

di,j
d0

)

))2

(3.12)

Path Loss Exponents Self-Adaptive Localization (PLEs-SAL) estimates the
path loss exponents (n1 . . . nN ) on the basis of the localization measurements
([19]). Contrary to the conventional localization approach, PLEs-SAL assumes
that the value of the path loss exponents (n1 . . . nN ) are not known before min-
imizing Equation 3.8:

min
θ={x̂j ,ŷj ,n̂1...n̂N |Pd0

=α}

∑
i∈Hj

(
Pi,j −

(
Pd0

− n̂i · 10 · log10(
di,j
d0

)

))2

(3.13)

Equation 3.13 does not define a unique position estimate, because the number
of unknowns is larger than the number of measurements. Therefore, localiza-
tion systems that estimate a different path loss exponent value per link require
more information than the available measurements. [19] solves this problem
by putting constraints on the estimated path loss exponents and changing the
optimization function.

Self-Adaptive Fingerprinting-based Localization uses RSS differences be-
tween reference node pairs ([18]), instead of using RSS measurements from in-
dividual reference nodes. [18] shows that this approach copes with hardware
differences between blind nodes. This is similar to calibrating the reference RSS
every time the blind node localizes itself, as in RR-SAL. The difference is that
[18] bases itself on fingerprints instead of a propagation model that describes
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Type Article θ Calibrated parameters
LN-CON [4] {x, y} {Pd0

, n}
RR-SAL This {x, y, Pd0

} {n}
PLE-SAL [13] {x, y, n} {Pd0}
LN-SAL [16] {x, y, Pd0 , n} {}
PLEs-SAL [19] {x, y, n1 . . . nm} {Pd0

}
Acoustic [9] {x, y, 10(Pd0

/10)} {n}

Table 3.1: Summary Conventional and SAL systems

the signal strength over distance decay (RR-SAL). We expect that Self-Adaptive
fingerprinting systems require similar constraints as range-based SAL systems,
because the Log-Normal Shadowing Model has shown to be a reasonable rep-
resentation of reality (e.g. [2]).

Acoustic Self-Adaptive Localization calibrates the transmission power (S)
on the basis of the localization measurements ([9], [11] and [17]):

min
θ={x̂j ,ŷj ,̂S|n=β,g=γ}

∑
i∈Hj

(
pi,j −

(
g · S
dn

))2

(3.14)

Here pi,j = 10
Pi,j
10 − μ. Equation 3.14 calculates the transmission power (Ŝ)

that minimizes the residual for a given position estimate, path loss exponent
and antenna gain ((x̂j , ŷj), n and g). This is similar to RR-SAL (Equation 3.10),
however the error distributions are different (see Section 3.2.3).

Table 3.1 summarizes the characteristics of the MLE of the conventional and
SAL approaches. The table columns represent the following:

• The “type” column contains the type of localization system.

• The “Article” column contains the references to the articles that describe
these localization systems.

• The “θ” column contains the set of parameters that are estimated by the
localization measurements.

• The “Calibrated parameters” column contains the set of parameters that are
calibrated before localization.
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LN-CON and RR/PLE/LN-SAL all use the propagation model in the same
way. These localization systems assume that the reference RSS and the path
loss exponent are equal for all links.

3.4 Constrained and Unconstrained Localization Sys-

tem Behavior

This section first analyzes the performance of RR/PLE/LN-SAL and compares
them with their conventional counterpart (LN-CON). We use this analysis to
determine the conditions under which these localization systems provide the
best and most reliable results. We apply these conditions as constraints on the
SAL systems. The last subsection evaluates the unconstrained and constrained
conventional and SAL systems in a environment with unknown antenna ori-
entations.

3.4.1 Measurement Setup

The measurement setup is equal to the setup described in Section 3.2.2, and
we use the same parameter values for the Log-Normal Shadowing Model as
determined in Section 3.2.2 for our simulations. We use the same measure-
ments for calibration and localization, which ensures the best localization per-
formance for the localization systems evaluated. We minimize Equations 3.9,
3.10, 3.11 and 3.12 using a brute force grid-based Monte-Carlo localization ap-
proach. Other approaches can be used, but this approach avoids local minima.
We evaluate our localization systems by:

• Simulations provide a way to analyze the localization performance. We
perform 1000 simulation runs per blind node position in Matlab.

• Real Measurements provide an indication for the localization perfor-
mance in a real-world application. We perform two sets of localization
measurements per blind node position (one set per antenna orientation).

We define the localization performance and stability as follows:

• The average positioning error, which we define as the localization perfor-
mance.

• The standard deviation of the positioning errors, which we define as the
localization stability.
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Figure 3.8: LN-CON and RR/PLE-SAL in one dimension

3.4.2 Performance and Behavior of Unconstrained Localization
Systems

This section analyzes the costs of calibrating the nuisance parameters with lo-
calization measurements by first analyzing the behavior and then the perfor-
mance of the unconstrained conventional and SAL systems. First, we analyze
the behavior in the one-dimensional case and secondly, we analyze the two-
dimensional case.

Consider the one-dimensional setup shown in Figure 3.8. In this setup, the
blind node measures RSS from two reference nodes. The green circles represent
reference nodes, the solid red box represents the blind node. Figure 3.8 shows
that:

• LN-CON (Equation 3.9) calculates a unique position estimate represented
by the solid red box.

• RR- and PLE-SAL (Equation 3.10) calculate two unique position estimates
represented by the solid box and the transparent red box. Note that these
two position estimates have different estimated propagation model set-
tings. In the one dimensional case, one position estimate is always inside
the convex hull of the reference nodes, and one position estimate is al-
ways outside the convex hull of the reference nodes.

This ambiguity is easily solved by measuring RSS from several reference nodes.
In a real measurement setup, the number of available reference nodes is scarce
and the ranging error is exponential (Equation 3.1). This means that SAL sys-
tems could pick the “wrong optimum”, which decreases the performance sig-
nificantly.

Figures 3.9 and 3.10 show the typical probability distribution of the position
estimates over the localization surface at blind node position (x = 3, y = 12) in
a two dimensional case. The triangles represent the reference nodes; the black
cross represents the real blind node position. White represents a probability
of zero; blue represents a relatively low probability; red represents a relatively
high probability. These figures show that the probability distribution of the
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Figure 3.9: Position distribution of LN-CON calculated by simulations

position estimates of LN-SAL differs significantly from LN-CON. In addition,
LN-SAL increases the localization error from 1.7 meters to 5.2 meters at blind
node position (x = 3, y = 12). We made two observations by analyzing an
extensive amount of probability distributions of blind node positions that have
a relatively high localization error:

1. The blind node positions within the convex hull tend to have large error
slopes outside the convex hull, especially when estimated by the SAL
systems. In Figure 3.10 the error slope is located at the north-west corner
of the localization surface.

2. LN-SAL tends to have an asymptotic position distribution. Figure 3.10
shows that the asymptotic position distribution is located at the south-
east corner of the localization surface. The estimated path loss exponents
in the asymptotic position distribution have a negative value.

These observations in 2D localization space show that position estimates that
are relatively far away from the actual position are located outside the convex



3 RSS-based Self-Adaptive Localization in Dynamic Environments 53

Figure 3.10: Position distribution of LN-SAL calculated by simulations

hull or have a negative path loss exponent. This is a similar finding that we
observed in the one-dimensional case. We use these observations in the next
subsection to constrain the conventional and SAL systems.

Tables 3.11 and 3.12 show the performance of the unconstrained conven-
tional and unconstrained SAL systems, calculated by the simulations and ob-
served by the real measurements. SIM is an abbreviation for simulations; REA
is an abbreviation for real measurements; UNC is an abbreviation for uncon-
strained and CON is an abbreviation for constrained. These tables show that
the localization performance decreases significantly as the number of unknowns
increases, which is in line with the observations. Note that the performances
obtained by simulations and real measurements are similar.

3.4.3 Performance of Constrained Localization Systems

In line with our empirical findings, we set constraints on the MLEs of the con-
ventional and SAL systems. We diminish the error causes recognized in Section
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Figure 3.11: Performance results simulations, unconstrained and constrained systems
in static environment

Approach Approach Antenna MEAN SIM STD SIM
Number Orientation UNC/CON UNC/CON

LN-CON 1 VER 1.59/1.37 m. 1.06/0.93 m.
RR-SAL 2 VER 2.14/1.42 m. 2.36/0.95 m.
PLE-SAL 3 VER 2.37/1.40 m. 2.98/0.93 m.
LN-SAL 4 VER 2.95/1.50 m. 4.14/0.97 m.
LN-CON 1 HOR 2.44/2.09 m. 1.71/1.47 m.
RR-SAL 2 HOR 3.53/2.12 m. 4.31/1.46 m.
PLE-SAL 3 HOR 3.22/2.14 m. 3.52/1.49 m.
LN-SAL 4 HOR 5.17/2.26 m. 6.51/1.59 m.

Figure 3.12: Performance results real measurements, unconstrained and constrained
systems in static environment

Approach Approach Antenna MEAN REA STD REA
Number Orientation UNC/CON UNC/CON

LN-CON 1 VER 1.53/1.39 m. 1.18/0.91 m.
RR-SAL 2 VER 1.98/1.40 m. 2.00/0.90 m.
PLE-SAL 3 VER 2.27/1.41 m. 2.60/0.89 m.
LN-SAL 4 VER 3.70/1.51 m. 5.65/0.97 m.
LN-CON 1 HOR 2.64/2.38 m. 1.73/1.40 m.
RR-SAL 2 HOR 3.43/2.42 m. 2.76/1.41 m.
PLE-SAL 3 HOR 3.32/2.47 m. 2.40/1.47 m.
LN-SAL 4 HOR 3.74/2.46 m. 4.09/1.43 m.

3.4.2 by assuming that:

• the blind node is positioned within the convex hull of the reference nodes.

• the path loss exponent is positive.
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These assumptions are presented by the following constraints:

(x̂j , ŷj) =
∑
i∈Hj

αi · (xi, yi)

∑
i∈Hj

αi = 1

n ≥ 0

(3.15)

Note that these constraints ensure that the position estimate is within the con-
vex hull, even when the true position may lie outside the convex hull. Our ap-
proach imposes requirements on the reference node setup relative to the blind
node locations. Note that this is similar to applying a spatial filter on the blind
node positions, a terminology used in the field of optics that spatially filters
noise from unwanted sources. In this section we use box constraints instead of
a set of inequality constraints defined by the convex hull, as this significantly
lowers the computation costs.
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Figure 3.13: Performance of unconstrained and constrained localization systems in
static environment with vertical antenna orientation

Figure 3.13 shows the performance of the unconstrained and constrained
conventional and SAL systems. On the x-axis, we use the approach numbers
as indicated by the localization approach numbering in Figures 3.11 and 3.12.
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Table 3.2: Performance in environment with two unknown antenna orientations

Approach MEAN REA STD REA
UNC/CON UNC/CON

LN-CON 5.58/2.34 m. 4.67/1.65 m.
RR-SAL 3.13/1.94 m. 3.40/1.25 m.
PLE-SAL 4.13/2.12 m. 5.19/1.21 m.
LN-SAL 3.72/1.99 m. 4.92/1.31 m.

Figure 3.13 shows the results of the simulations (SIM) and real measurements
(REA). Figures 3.11 and 3.12 show the raw numbers represented in Figure 3.13.
Figures 3.11, 3.12 and 3.13 show that:

• The constrained localization systems increase the localization performance by
roughly 40% and the localization stability by about 65% (in average).

• The constrained SAL systems provide similar results as their optimally cali-
brated constrained conventional counterpart.

We expect that the SAL systems provide similar results as their conventional
counterpart in wireless networks with a uniform reference node setup, as sim-
ulations with other uniform reference node setups show similar results. Sim-
ulations with 1000 random reference node setups show that the constrained
RR-SAL and PLE-SAL provide similar results (mean error = 1.6 m) as their
conventional counterpart (mean error = 1.5 m). These simulations also show
that LN-SAL is more dependent on the reference node setup than the other
constrained SAL systems (mean error = 1.9 m). The random reference node se-
tups contain 9 reference nodes, with four reference nodes located at the corners
of the localization area (15× 15 m2) in order to comply with the constraints.

We expect that the SAL systems provide similar results as their conven-
tional counterpart with other Log-Normal Shadowing Model parameter set-
tings. Hence, the Log-Normal Shadowing Model parameter settings only de-
termine the magnitude of the mean error (e.g. [8]). Simulations with other
parameter settings verify this observation. For instance, simulations with the
following parameter settings {Pd0

= −10 dBm, n = 3.5, σdBm = 8dBm} show
that the constrained SAL systems provide similar results (mean error = 2.5/2.5
/2.8 m) as their conventional counterpart (mean error = 2.3 m).
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Figure 3.14: Performance in environment with two unknown antenna orientations

3.4.4 Performance with Different Antenna Orientations

This section analyzes the performance of unconstrained and constrained con-
ventional and SAL systems in an environment using the measurements de-
scribed in Section 3.2.2. In these measurements, we assume that the antenna
orientation of the blind node is not known. In other words, the localization
systems use the propagation model settings that fit all the measurements (ver-
tical and horizontal antenna orientation described in Section 3.2.2). Table 3.2
shows the numbers that are represented by Figure 3.14 using a similar format
as Figure 3.13. This table and figure show that on average:

• Our constrained SAL systems increase the localization performance by
roughly 45% and stability by about 70% in comparison with the existing
unconstrained SAL systems.

• Our constrained SAL systems increase the localization performance by
roughly 65% and stability by about 75% in comparison with the uncon-
strained conventional localization systems.

• The constrained conventional localization system increases the localiza-
tion performance by roughly 60% and localization stability by about 65%
in comparison with the unconstrained conventional localization system.
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These measurements show that SAL outperforms the conventional localization
system when the antenna orientation is unknown. In a more realistic setup,
there are more spatial factors that influence the RSS in a similar way. There-
fore, we expect that in a spatially varying environment the difference in per-
formance will be larger between SAL and conventional localization systems.

Finally, these measurements show that constraining the conventional local-
ization system increases the performance in a similar way as with SAL systems.

3.5 Conclusion

Conventional RSS-based localization estimators assume that the propagation
model is static and identical for all nodes. This limits the applications to en-
vironments in which the optimal calibration settings are independent of space
or hardware. Realistic environments are dynamic and the optimal propaga-
tion model settings are dependent on the node’s hardware and location. Self-
Adaptive Localization systems only use milliseconds for their calibration and
localization measurements, which is too short to be influenced by dynamic
changes of the environment. We showed that constraining these SAL systems
is necessary to provide optimal and reliable results in static and dynamic envi-
ronments.
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CHAPTER 4

Stochastic Radio Interferometric

Positioning in the 2.4 GHz Band

This chapter presents a novel Radio Interferometric Positioning System (RIPS),
which we call Stochastic RIPS (SRIPS). Although RIPS provides centimeter ac-
curacy, it is still not widely adopted due to (1) the limited set of suitable radio
platforms and (2) the relatively long measurement and calibration times. SRIPS
overcomes these practical limitations by (1) omitting the calibration phase of
the existing RIPS and by (2) applying a novel positioning algorithm. SRIPS
exploits the phenomenon of the small but stable difference between two trans-
mitted frequencies that often exists when two radios are tuned to the same
frequency. We obtain an experimental measure for this stability. This approach
enables the implementation of RIPS on commonly available radio platforms,
such as the CC2430, because fine-tuning in small steps relative to the beat fre-
quencies for calibration is not required. In addition, we show that SRIPS cal-
culates the position that provides the best fit to the set of measurements, given
the underlying statistical and propagation models. Therefore, SRIPS converges
more accurately to the true locations in a variety of situations of practical in-
terest. Experiments in a 20 × 20m2 set-up verify this and show that our SRIPS
CC2430 implementation reduces the number of required measurements by a
factor of three, and it reduces the measurement time to less than 0.1 seconds,
while providing accuracy similar to that of the existing RIPS implementation
on the CC1000 platform, which requires seconds.

1

1This chapter is partially published in [17] and [25]
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4.1 Introduction

This chapter describes a novel approach for Radio Interferometric Positioning
of devices in wireless networks that we call Stochastic RIPS, or SRIPS. Local-
ization in wireless networks is the process of finding a physical location in an
automated manner using wireless communication.

Radio Interferometric Positioning does not depend on the received signal
strength as a measure for the location of unknown nodes as in standard RSS-
based localization. Rather, it depends on the stability of two slightly different
frequencies of a pair of carrier waves and on the nonlinear permittivity of a
pair of receiving antennas to generate beat signals. Electromagnetic Interfero-
metric Positioning was first developed with the same propagation models in
the optical regime with the advent of Zeeman Lasers ([1]). The Zeeman Laser
Interferometer generates two laser frequencies relatively close to each other,
generating a frequency beat at the detector. The stability of the frequency beat
is a direct measure for the positioning accuracy ([1]). As this frequency beat
is derived from the same source, you can obtain nanometer accuracy over a
range of one meter ([3]).

RIPS ([8]) relies on two independent sources. These sources, called sender
pairs, simultaneously transmit unmodulated carrier waves at slightly different
frequencies that must be stable during the measurement time of one frequency
beat signal. Receiving node pairs that are within transmission range measure
the energy of the frequency beat signal. The phase offsets of the beat signals are
a function of the distances between the nodes involved relative to the carrier
wavelengths. These phase offset measurements are performed for all sending
and receiving node pairs over a range of discrete carrier frequencies. This set
of phase offset measurements serves to calculate the unique geometrical path
differences between each sending and receiving node pair. Each path differ-
ence is called a q-range ([9]). RIPS calculates the position estimate by fitting
it to the q-ranges. [8] shows that RIPS can achieve centimeter accuracy over a
range of 100 meters.

[8] calculates each q-range separately, by fitting the phase offset measure-
ments of each sending and receiving pair separately. Then it fits the position
estimate to these calculated q-ranges. This approach does not always provide
the best fit given the set of phase offset measurements and underlying statisti-
cal and propagation models. A more rigorous approach is to fit all phase offset
measurements together, rather than fitting the phase offset measurements of
each sending and receiving pair separately. That approach should converge to
the best fit of all phase offset measurements, and that is what SRIPS does. It
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fits all the phase offset measurements by evaluating the q-ranges as stochastic
functions instead of deterministic ones.

RIPS achieves its centimeter accuracy at the cost of (1) a strict requirement
on the radio platform that limits the set of suitable radio platforms and (2) rel-
atively long measuring and calibration times. SRIPS overcomes these practical
limitations by (1) omitting the calibration phase and by (2) applying its new al-
gorithm. The RIPS calibration phase requires that the radio tune its frequency
in steps smaller than the desired frequency beat, so that the frequency beat can
be calibrated. Most Commercial-Off-The- Shelf (COTS) radios do not comply
with this tuning requirement. As a result, RIPS can be implemented only on a
few radio platforms, such as the CC1000 ([8]-[16]). To our knowledge, there are
no IEEE 802.15.4 radios in the 2.4 GHz range that comply with the frequency
tuning requirement of the original RIPS implementation (e.g. [21]-[24]).

One of the reasons we implemented SRIPS on a CC2430 radio platform is
that it operates in the 2.4 GHz range. The CC1000 platform ([20]) operates in
the 400 and 800/900 MHz range. The allocated bandwidth (ISM band) within
these frequencies is non-overlapping for different regions in the world. For
instance, in Europe the allocated bandwidths are limited to 433.05-434.79 MHz
and 868.0−868.6 MHz. The existing RIPS implementation uses a bandwidth of
60 MHz ([400, 460] MHz, [8]), which is outside the allocated bandwidth below
the 1 GHz range.

The contributions of this chapter are as follows:

• The accuracy of Electromagnetic Interferometric Positioning depends on
the stability of the generated frequency beat ([1]). This chapter experi-
mentally verifies that the stability of the generated frequency beat signal
is sufficient for at least 80 milliseconds, which provides the required sta-
bility for a position accuracy of centimeters.

• We introduce a novel Radio Interferometric Positioning System called
SRIPS. Measurements on a CC2430 platform in a 20 × 20 m2 outdoor
environment show that SRIPS provides an accuracy of ∼ 0.3 meters. We
show that our SRIPS CC2430 implementation provides results similar to
those of the existing RIPS CC1000 implementation, while reducing the
measurement time from 1 to 0.06 seconds and reducing the number of
measurements by a factor of 3.

• We compare the performance of our SRIPS algorithm with a typical RSS-
based localization algorithm ([6]). Measurements on a CC2430 platform
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in a 20 × 20 m2 outdoor environment show that SRIPS improves the ac-
curacy from ∼ 6 to ∼ 0.3 meters compared with a typical RSS-based po-
sitioning algorithm.

Section 4.2 of this chapter reviews the existing work in the field of Optical
and Radio Interferometric Localization. Section 4.3 describes how we imple-
mented the Radio Interferometric Position System on the CC2430 platform. In
addition, it shows that the CC2430 platform provides the required stability for
a position accuracy of centimeters. Section 4.4 describes the SRIPS positioning
algorithm and shows how our algorithm copes with the varying distance esti-
mate accuracies. Section 4.5 evaluates RIPS and SRIPS on a CC2430 platform.
In addition, it compares our CC2430 SRIPS implementation with the existing
CC1000 RIPS implementation. Section 5.7 provides a conclusion.

4.2 Background

This section presents a brief summary on Interferometric Positioning. Because
the propagation models for Optical and Radio Interferometric Positioning are
essentially the same, and because the former was developed thirty years ear-
lier, we start with positioning based on Optical Interferometry. Then we de-
scribe the measurement set-up we use throughout this chapter. Section 4.2.3
provides the theoretical background on Radio Interferometric Positioning. At
the end of this section, we compare the process flows of RIPS and SRIPS.

4.2.1 Interferometric Positioning in the Optical Regime

In Optical Interferometric Positioning Systems, the two interference signals are
generated by one coherent laser source that is split into two Zeeman modes
([1]). These two modes are split by a special beam splitter into a reference and
signal mode, with the signal mode reflected by a moving target that must be
positioned. The frequency beat (Δf ) of these two modes is on the order of a
few hundred MHz. The positioning is derived from the Doppler shifted phase
difference between the two modes. The resolving power of this positioning
device is directly related to the stability of the beat signal: δ(Δf)

Δf ([1]). Hence,

the error increases linearly with the distance: (dBC − dBD) · δ(Δf)
Δf ([1]). The

Zeeman Laser provides a high frequency beat stability because both modes are
derived from the same source. Inherent instabilities in the source are canceled
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out at the detector. This results in nanometer resolving power on a range of one
meter ([3]). RIPS uses two independent radio transmitters with two indepen-
dent receiving pairs, and this seriously limits the stability of the resulting beat
signals compared to the Optical Interferometer. As we see later, the resulting
resolving power is on the order of 10−2 . . . 10−3 as compared with 10−9 in the
optical case. In this chapter, we empirically measure the resolving power of
our radio platform by determining the stability of the beat signals (see Section
4.3.2).

4.2.2 Radio Interferometric Positioning Set-up

This chapter focuses on Radio Interferometric Positioning of a target node us-
ing a network infrastructure. This set-up distinguishes two types of nodes:
the infrastructure nodes and the target nodes. The infrastructure nodes know
their location and support the target nodes to position themselves. In general,
this set-up provides decimeter accuracy in a measurement time of one second
(see Section 4.5.5). The target node can be either a transmitter or receiver. We
implement the target-as-receiver implementation, so that we can position mul-
tiple target nodes in parallel without increasing the measurement time. This
scalability is not possible with the target-as-sender implementation, because in
that set-up the measurement time increases with the number of target nodes
([11] and [12]). We consider the scalability of increasing the number of target
nodes without affecting the measurement time as an important aspect in wire-
less positioning systems.

Figure 4.1 shows the RIPS/SRIPS set-up used throughout this chapter. The
circles represent the infrastructure nodes (A/B/C/E) and the triangle (D) rep-
resents the target node. Red indicates transmitting nodes and green receiving
nodes. The diagram in Figure 4.2 shows which measurements are performed
to estimate the position of one or several target nodes:

• Phase Offset Measurements
Two infrastructure nodes form a sender pair and generate a beat signal;
two or more receivers sample the beat signal with ’O’ sample points.
RIPS uses 256 sample points. We vary this amount for analysis (see Sec-
tion 4.5). The CC1000 has a sampling frequency of 9 kHz, and the CC2430
has a sampling frequency of 62.5 kHz. The beat frequency and phase off-
set is then calculated from these sampled beat signals for each receiver
pair. Each receiver pair includes one infrastructure node and one target
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q-range=dAD-dBD+dBC-dAC
t-range=dAD-dBD

D

Figure 4.1: Measurement set-up: red = transmitting, green = receiving, circle = infras-
tructure node, triangle = target node

node. Note that all participating nodes must be accurately synchronized
(microsecond synchronization, [8]).

• Measurement round
This phase consists of performing N phase offset measurements at N
different frequencies to calculate the q-range between the sending and
receiving node pair (see Section 4.2.3). However, calculating q-ranges
is computationally intensive. Therefore, the calculated phases and fre-
quencies are sent to a computer for post-processing at the end of each
measurement round ([8]-[13]). Each measurement round is identified by
a unique sender pair.

• Positioning of the target node
The position of the target node is calculated on a central computer on
the basis of the data of two or more measurement rounds (independent
q-ranges).

The table in Figure 4.2 shows which nodes are sending/receiving during
each measurement round in the measurement set-up shown in Figure 4.1. For
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Measurement
Round (K) Senders Receivers Frequencies

(N)

1
2
3
4
5
6

A / B C / E / D 38
A / C B / E / D 38
A / E B / C / D 38
B / C A / E / D 38
B / E A / C / D 38
C / E A / B / D 38

Measurement Round

Phase Offset Measurements
Senders:

Transmit unmodulated carrier
Receivers:

Sample ‘O’ sample points
Calculate phase offset

Perform over N frequencies

Perform for K sender pairs

Figure 4.2: Measurement phases

instance in the first measurement round, infrastructure nodes A and B are
transmitting unmodulated carriers. Nodes C, E and D measure the beat sig-
nal (R = 3 Receivers). Each beat signal is measured over 38 frequencies in
our set-up. Figure 4.2 shows that there are K = 6 measurement rounds, each
allowing for two receiver pairs. In this example, we assume that the receivers
sample the beat signal with O = 500 sample points. Then the total number of
sample points used to position the target node equals:

K ·R ·N ·O = 6 · 3 · 38 · 500 = 342000 (4.1)
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The total measurement time to position the target node does not depend on
the number of receivers:

Total measurement time = K ·N ·O · 1

fs
(4.2)

Here fs is the sampling frequency of the hardware used. Therefore, increas-
ing the number of receiving infrastructure nodes increases the total number of
sample points used to position the target node. This increases the position-
ing accuracy (e.g. [12]), without increasing the total measurement time, and
therefore energy consumption of the target nodes.

4.2.3 Radio Interferometric Positioning

Nodes A and B in Figure 4.1 transmit an unmodulated carrier signal with fre-
quencies fA and fB . Receivers C and D measure the energy of the composite
signal with a frequency beat of Δf = |fA − fB |. The measured phase offset is
a function of the distances between sender pair A/B and receiver pair C/D,
assuming that fA > fB :

Δϕi = 2π

(
dAD − dAC

λA
− dBD − dBC

λB

)
mod (2π) (4.3)

≈ 2π

(
dABCD

λi

)
mod (2π) . (4.4)

Here:

q-range = dABCD = dAD − dBD + dBC − dAC , (4.5)

and:

t-range = dABCD − dBC + dAC = dAD − dBD . (4.6)

Here Δϕi is the relative phase offset; dAD is the distance between node A
and D; [8] defines λi as λi =

2c
fA+fB

with c representing the speed of light. We
define dABCD as the q-range, as in [9]. The locations of infrastructure nodes A,
B and C are known, so the distances between these nodes are also known (dBC

and dAC). We use this information to transform the q-range into the t-range, so
that all the values of the variables on the left side of the equation are known.
Throughout this chapter, we use the q-range in the equations and the t-range in



4 Stochastic Radio Interferometric Positioning in the 2.4 GHz Band 71

the figures, because the t-range is independent of the location of the receiving
infrastructure node. This is useful for comparing q-ranges of the same sender
pair, as we show in Section 4.4.3.

Equation 4.3 does not define a unique solution for the q-range (dABCD) due
to mod (2π)-related ambiguity of the q-range. Therefore, RIPS implemen-
tations perform phase offset measurements over N frequencies for the same
sender pair: f1 . . . fN . The squared error of a q-range estimate is given by ([9]):

ERROR(q-rangej) =
N∑
i=1

(q-rangej − di,j)
2 (4.7)

Where:

di,j = round
(q-rangej − γi,j

λi,j

)
· λi,j + γi,j

minimizes Equation 4.7 for a given q-range; γi,j represents the phase offset
relative to the wavelength γi,j = λi,j

Δϕi,j

2π . Figure 4.3 shows the t-range error
distribution calculated by Equation 4.7 as a function of the t-range.

The Most-Likelihood-Estimator of the q-range is the global minimum of
the q-range error distribution, minimizing the squared error between the cal-
culated and measured phase offsets:

qest,j = arg min
q-rangej

N∑
i=1

(Δϕi,j − ̂Δϕi,j)
2

= arg min
q-rangej

N∑
i=1

(q-rangej − di,j)
2

= arg min
q-rangej

ERROR(q-rangej)

(4.8)

Most RIPS algorithms use this deterministic approach for estimating one
q-range on the basis of the calculated q-range distribution (e.g. [8]). Figure
4.3 shows an example of a t-range error distribution of one sending pair. It
shows that the real t-range is located in a local minimum instead of the global
minimum. Such error distributions seriously limit the accuracy of RIPS but can
be handled by SRIPS. We discuss this further in Section 4.4.

The position is estimated by minimizing the squared difference between
the calculated and estimated q-ranges:
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Figure 4.3: t-range error distribution, local optimum

{x̂, ŷ} = argmin
x̂,ŷ

M∑
j=1

(qest,j − ̂q-rangej)2 (4.9)

Here, M is the number of q-range estimates; ̂q-rangej is the calculated q-
range as a function of the estimated position (x̂, ŷ). Although the present liter-
ature shows that Equation 4.9 converges with increasing N (phase offset mea-
surements over different frequencies) and M (q-range estimates), they don’t
necessarily converge to the true positions, as shown in Section 4.4.

4.2.4 Process flow of RIPS and SRIPS

Figure 4.4 shows the individual phases of the CC1000 RIPS and the CC2430
SRIPS implementations:

• Calibration Phase
The calibration phase ensures that the frequency beat is measurable given
the user-defined sample time (28 . . . 40 ms) and the hardware-defined
sampling rate (9 KHz). However, the calibration phase requires that the
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Figure 4.4: RIPS vs SRIPS

radio set the frequency in small steps relative to the desired beat frequen-
cies. The CC1000 can tune its frequency in steps of 65 Hertz, which is
sufficient for a frequency beat of 300 to 400 Hertz ([8]). The CC2430 does
not comply with this tuning requirement; therefore, SRIPS follows an-
other approach (see Section 4.3.1).

• Measurement Phase
In this phase, the receivers measure the phase and frequency of the beat
signals. RIPS and SRIPS use a simple threshold-crossing technique ([2])
for estimating the phase offset between the receivers, to keep the compu-
tational costs low.

• Calculate Distance Distributions
The q-range error distribution is calculated using Equation 4.7.

• Estimate Distances (Deterministic)
In this phase, the q-range is estimated on the basis of the calculated q-
range error distribution. Figure 4.3 shows an example where the real
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Platform CC1000 CC2430
Calibration Yes Not available

Sample time 28.4 . . . 40 ms 0.8 . . . 8 ms
RSS sampling rate 9 kHz 62.5 kHz
Frequency beat 200 . . . 800 Hz 0.2 . . . 14 kHz
Frequency range 400 - 800/900 MHz 2.4 GHz
Positioning algorithm RIPS SRIPS

Table 4.1: Platform characteristics

q-range lies in a local minimum, which is a known problem of RIPS (e.g.
[9]). Most RIPS algorithms assume that the real q-range is determined by
this global minimum (Equation 4.8). [9] and [11] try to solve this prob-
lem, however they are dependent on parameter settings that can only be
determined empirically. SRIPS does not estimate q-ranges, but evaluates
the q-range error distribution directly for estimating the position. There-
fore, it does not have this distance estimation phase (for details we refer
to Section 4.4).

• RIPS and SRIPS Positioning Algorithms
In this phase, RIPS estimates the position on the basis of the q-range es-
timates (Equation 4.9). SRIPS estimates the position on the basis of the
calculated q-range error distributions.

Figure 4.4 shows that the only difference between RIPS and SRIPS is the
omitted calibration phase and the localization algorithm. Otherwise, RIPS and
SRIPS perform the same measurements and use the same input for localization.

4.3 SRIPS Measurement Phase and Error Character-

ization

In this section, we focus on the measurement phase. In addition, we empiri-
cally verify whether the CC2430 hardware is suitable for radio interferometric
positioning.
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4.3.1 CC2430 Measurement Phase

A typical target-as-receiver RIPS and SRIPS set-up is shown in Figure 4.1. Al-
though our SRIPS implementation tunes each sender pair to the same fre-
quency, in practice these frequencies are never exactly the same. There is often
a small but stable difference between the transmitted frequencies caused by
small and stable differences between the crystal oscillators. We measure the
beat frequencies at receiver pairs in our user-defined measurement time of 8
ms per frequency at the hardware-defined sampling rate of 62.5 KHz.

The measurement time per frequency determines the lower bound of the
measurable frequency beat: 1

0.008 ≈ 125 Hz. The Nyquist frequency deter-
mines the upper bound of the measurable frequency beat: 62.5

2 ≈ 30 KHz.
Measurements with 48 different sender pairs show that 85% of these pairs gen-
erate measurable frequency beat signals.

Our CC2430 SRIPS test bed contains a master node, which controls and
collects the SRIPS measurements. The master node can be a transmitter or
receiver. Our SRIPS implementation consists of the following steps in order to
perform one phase offset measurement:

1. The master node sends a synchronization message, which synchronizes
the nodes and identifies the transmitters and receivers. We use the CC2430
MAC controller in order to obtain at least 208 ns synchronization accu-
racy at the reception of the synchronization message ([21]). The time (1.4
ms) between the synchronization message and sampling the beat signal
introduces an additional error. This error depends on the accuracy of the
crystal oscillator and the 1.4 ms waiting time. [17] shows that this intro-
duces an extra error of approximately 60 ns.

2. 1 ms after receiving the synchronization message, the transmitters start
sending unmodulated carrier signals.

3. 1.4 ms after receiving the synchronization message, the receivers start
sampling the beat signal. We use the CC2430 DMA controller to perform
the measurements with clock tick accuracy. This means that the accuracy
of the crystal oscillator determines the measurement jitter. [17] shows
that the maximum measurement jitter is on the order of 320 ns when
sampling 500 consecutive sample points over 8 ms.

4. At the end of each phase offset measurement, the master node collects
the 500 sample points from each receiver for analysis.
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Figure 4.5: Single-Sided Amplitude Spectrum, FT stands for Fourier Transform

RIPS and SRIPS use the same methodology to obtain the required phase
offset measurements. The only difference is that in our current SRIPS imple-
mentation, we send the raw sample points to a computer for analysis. In a
commercial implementation, these computations can be distributed to the local
processors of the nodes. Table 4.1 compares the characteristics of the CC1000
and CC2430 platform.

4.3.2 CC2430 Error Characterization

Before we further analyze SRIPS and its performance in a practical localization
set-up, we perform several frequency beat measurements in a limited set-up
to show that our CC2430 hardware with a 20 ppm crystal oscillator is suitable
for radio interferometric positioning. This limited set-up consists of four nodes
placed in the corners of a 1 × 1 m2 square. The short-range and line-of-sight
measurements minimize the influence of the environment on the received sig-
nals, so that we practically measure the performance of the CC2430 hardware.
We place all radios on tripods at the same height of 1.5 meters, and we do not
place objects in the vicinity of the radios, to minimize the influence of interfer-
ing reflections ([9]). The conditions during the measurements are static (tem-
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Figure 4.6: Zoomed in Single-Sided Amplitude Spectrum, FT stands for Fourier Trans-
form

perature, humidity, no moving objects). Receiving nodes sample the beat sig-
nals with 5000 sample points at a sample rate of 62.5 KHz. All nodes are tuned
over 38 frequencies in a bandwidth of 2.406 . . . 2.480 GHz. The frequency beat
signals are measured with all possible sender and receiver pairs (6). Each node
is equipped with a widely used omnidirectional dipole antenna with a vertical
orientation.

Minimum bandwidth is the inverse of the maximum coherence time or sta-
bility of the beat signals. Therefore, increasing the measurement time beyond
the coherence time does not provide reliable phase measurements as expressed
by Equation 4.3. We calculate the bandwidth of the first 500 sample points
and over all 5000 sample points. Figures 4.5 and 4.6 show the Fourier trans-
form of the corresponding frequency beat signals. In each figure, the red curve
represents the Fourier transform of the first 500 sample points and the black
curve represents the Fourier transform of the 5000 sample points. These fig-
ures clearly show that the bandwidth of the spectrum of the black curve (∼ 20
Hz) is a factor of 10 smaller than the corresponding bandwidth of the red curve
(∼ 200 Hz). Only coherent signals reduce the frequency bandwidth propor-
tional to the measurement time. This is a direct result of the Heisenberg-Pauli-
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Weyl inequality, because the product of the variance of time and frequency
remains constant. This means that the stability of our beat signals is at least 80
ms.

[8] states that the interferometric range of the CC1000 carrier waves is on
the order of a few hundred meters. Our SRIPS algorithm measures a frequency
stability of at least 80 ms, which corresponds to a theoretical coherence length
of at least 2400 km for the plane waves of our propagation model that have an
infinite range in free space. However, the energy transmitted from the antenna
is not concentrated into a narrow beam, so that in the far field this energy
decreases inversely proportionally to the square of the distance from the radio
transmitters. This path loss in free space limits the application of RIPS and
SRIPS to localization areas with a diagonal of a few hundred meters. Therefore,
both RIPS and SRIPS can determine the positions with a relative accuracy of
roughly (dBC − dBD) · δ(Δf)

Δf ≈ (dBC − dBD) · 10−3 when the measurement
times are adapted to approach the coherence times of the radio transmitters. In
principle, it is possible to work with an array of sending emitters that relay the
carrier waves at the points of maximum decay, so that the localization space
can be extended by several orders of magnitude. This is a subject for future
research.

4.4 Stochastic Radio Interferometric Positioning

This section describes our novel SRIPS positioning algorithm. It first analyzes
and compares the optimization functions of RIPS and SRIPS. Then it describes
the implementation of the localization algorithm of SRIPS. In the last subsec-
tion, it provides a typical example of the performance of RIPS and SRIPS.

4.4.1 RIPS versus SRIPS

RIPS ([8], [12] and [14]) estimates the position by sequentially minimizing two
cost functions. First it calculates the q-ranges by minimizing the cost function
described in Equation 4.8. This equation calculates the q-range that minimizes
the squared difference between the phase offsets measured at N frequencies
associated with one sender and receiver pair. This minimum is equal to the
global minimum of the q-range error distribution. Then RIPS calculates the
position by minimizing the cost function described in Equation 4.9. This lat-
ter cost function calculates the position by minimizing the squared difference
between the calculated and estimated q-ranges. RIPS ([8], [12] and [14]) uses a
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Least Squares Method to calculate the position that best fits the measurements.
In Radio Interferometric Positioning, the measured values are the phase off-
set measurements. However, the position calculated by Equations 4.8 and 4.9,
does not minimize the squared difference between all measured and estimated
phase offsets. The best fit to all measurements is obtained by:

{x̂, ŷ} = argmin
x̂,ŷ

M∑
j=1

N∑
i=1

(Δϕi,j − ̂Δϕi,j)
2 (4.10)

Here, ̂Δϕi,j is the estimated phase offset calculated by the position estimate.
In other words, Equation 4.10 calculates the best position (fit) given the set of
measurements and underlying propagation and statistical models, rather than
first taking the minimum of a subset and substituting it in the total. Note that
Equation 4.10 corresponds to the Maximum Likelihood Estimator when the
phase offset measurements follow a normal distribution. This results in the
following practical differences between RIPS and SRIPS:

• The original RIPS algorithm cannot cope with false global optimums and
q-ranges located in local optimums in the q-range error distribution (e.g.
[9]). This is because Equation 4.8 calculates each q-range separately on
the basis of the phase offset measurements associated with that q-range.
Equation 4.10 can cope with false global optimums and local optimums
when the other phase offset measurements (those not associated with that
specific q-range) can discriminate between the true and false optimums.

• The original RIPS algorithm cannot cope with varying q-range estimate
precisions. It implicitly assumes that the precisions are equal for the esti-
mated q-ranges, because it minimizes the equally weighted squared dif-
ference between the calculated and fitted q-ranges (Equation 4.9). SRIPS
discriminates against such less precise or wider q-range error distribu-
tions, because these provide a constant contribution to the squared errors
of Equation 4.10.

The advantage of Equations 4.8 and 4.9 over Equation 4.10 is that Equations
4.8 and 4.9 require significantly fewer computations using the analytic solver
([10]), while providing the required localization performance on the CC1000
(e.g. [12]).
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4.4.2 SRIPS implementation

This section describes the implementation of the localization algorithm of SRIPS.
Equation 4.10 is rewritten as:

{x̂, ŷ} = argmin
x̂,ŷ

M∑
j=1

N∑
i=1

(Δϕi,j − ̂Δϕi,j)
2 (4.11)

= argmin
x̂,ŷ

M∑
j=1

N∑
i=1

(di,j − ̂q-rangej)
2 (4.12)

= argmin
x̂,ŷ

M∑
j=1

ERROR( ̂q-rangej) (4.13)

SRIPS minimizes Equation 4.13. However, Equation 4.13 has a rapidly oscil-
lating behavior as can be seen from the t-range error distribution shown in Fig-
ure 4.3 (

∑M
j=1 ERROR( ̂q-rangej)). Therefore, the calculated errors for a given

position estimate become unpredictable. SRIPS solves this problem by taking
the envelope of the minimum of the q-range error distribution:

ERRORSRIPS( ̂q-rangej) =

min
(

ERROR([ ̂q-rangej −W, ̂q-rangej +W ])
)

(4.14)

Here W is a constant dependent on the frequency band used of the radio,
in our case 2.4 GHz; [ ̂q-rangej −W, ̂q-rangej +W ] is an interval;

min
(

ERROR([ ̂q-rangej −W, ̂q-rangej +W ])
)

is the minimum value of Equa-
tion 4.7 over the specified interval. We numerically determine the value of W
as 12.5 centimeters. We rewrite Equation 4.13 with the aid of Equation 4.14 as:

{x̂, ŷ} = argmin
x̂,ŷ

M∑
j=1

ERRORSRIPS( ̂q-rangej) (4.15)

Figure 4.7 shows an example of the smoothed t-range error distribution
using Equation 4.14. Figure 4.8 shows this smoothed t-range error distribution
over the localization surface using Equation 4.15. In Figure 4.8, the cross is the
true location of the target node; red represents large errors and blue represents
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Figure 4.7: Smoothed t-range error distribution

Figure 4.8: Smoothed t-range error distribution over the localization surface
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small errors. Note that the two minimums shown in Figure 4.7 are represented
by the two darker blue lines in Figure 4.8.

The SRIPS localization algorithm uses a grid-based Monte Carlo approach
to minimize Equation 4.15. It accumulates the M smoothed q-range error dis-
tributions over the localization area represented by the Monte Carlo samples.
In other words, it treats the q-ranges as stochastic variables to minimize Equa-
tion 4.15. We implemented SRIPS in Matlab, which post-processed all the data
obtained by the CC2430 test bed. The main purpose of this implementation is
to provide a tool for analysis; therefore, it does not minimize the computational
or memory costs.
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Figure 4.9: Two separate smoothed t-range error distributions (blue curve and red
curve)

4.4.3 Typical Example of RIPS versus SRIPS

For reasons discussed in Section 4.5.5, our CC2430 platform test bed produces
roughly 25% outliers in estimating the q-range, even at relatively long mea-
surement times. Figure 4.9 shows an example where a t-range with a clear
distinct minimum in its smoothed error distribution (blue curve) is combined
with an outlier that has its global minimum about 30 meters away. These two
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Figure 4.10: Average accumulated smoothed t-range error distribution as calculated by
SRIPS

t-range measurements belong to the same sender pair but have different re-
ceiver pairs. In other words, they share the same t-range (see Section 4.2.3).
RIPS calculates the t-range based on these two measurements as the average
of the global minimums of the two t-ranges, which is about 30

2 ≈ 15 meters
away from the true t-range. SRIPS averages the two error distributions as in
Equation 4.15. This average is represented by the blue curve in Figure 4.10 and
still has its global minimum at the true location.

Figure 4.10 shows an example in one dimension (error as a function of the
t-range). Note that SRIPS discriminates between true and false minimums in a
similar way when all t-range error distributions are summed over the localiza-
tion surface as defined in Equation 4.15. Figure 4.11 shows that SRIPS discrim-
inates between the two minimums shown in Figures 4.7 and 4.8 by including
the t-range error distributions from the other sender and receiver pairs. In this
particular case, the resulting positioning error is 3 centimeters.

Figure 4.12 illustrates the sensitivity of SRIPS to the total measurement time
as defined by Equation 4.2. When reducing the total measurement time by a
factor of 20, the error plot of Figure 4.12 becomes less discriminating. The po-
sitioning error increases to 60 centimeters. The advantage of these error distri-
bution plots is that, at a glance, they give a quick impression of the accuracies
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Figure 4.11: 2 s. total measurement time, error distribution over localization surface

Figure 4.12: 100 ms. total measurement time, error distribution over localization surface
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of the position estimates.

4.5 Performance Evaluation

Section 4.5.1 describes the measurement set-up. Section 4.5.2 presents the per-
formance evaluations of the RIPS and SRIPS positioning algorithms on the
CC2430 platform with the various measurement settings of interest. Section
4.5.3 briefly discusses the amplitude filtering as applied by RIPS on the CC1000
platform. Section 4.5.4 compares the SRIPS results with ranged-based RSS
results in a similar set-up. Section 4.5.5 summarizes the differences between
SRIPS and RIPS on the CC2430 platform, and Section 4.5.6 compares the RIPS
and SRIPS results on the different platforms. Finally, Section 4.5.7 discusses the
performance of SRIPS in indoor environments.

Figure 4.13: Measurement environment

4.5.1 Measurement Set-up

The measurements were conducted in a 20 × 20 m2 outdoor environment,
shown in Figure 4.13, with six CC2430 radios (Figure 4.14). We used four
CC2430 radios as reference nodes, which were located at the corners of the
localization area; these reference nodes were fixed during and between mea-
surement rounds. We used two CC2430 radios as target nodes; these target
nodes measured the frequency beat signals at 12 different locations in a 4 × 4
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Figure 4.14: CC2430 radio

grid. We determined the locations of the reference and target nodes with a mea-
suring tape. We estimate the accuracy of the node placements as 10 cm. The
receiving nodes measured 500 sample points per phase offset measurement in
8 ms per frequency over a total of 38 frequencies in a range of 2406 to 2480
MHz. All of the radios were placed at the same height of 1.5 m to minimize
reflection noise (e.g. [9]). All individual sample points were sent to a computer
and logged for post-processing. These measurements were performed over a
period of two days with changing weather conditions. We used this set-up
because it is similar to the set-up described in [8].

This measurement set-up also performed 500 RSS measurements at the same
38 frequencies using individual sender rather than paired senders to compare
the performance of RIPS and SRIPS with a typical RSS-based localization algo-
rithm.

4.5.2 Performance Evaluation

This section analyzes the performance of SRIPS as a function of the total num-
ber of sample points to position one target node. We calculate this number and
the measurement time using Equations 4.1 and 4.2. Figures 4.15 and 4.16 show
the performance of the RIPS and SRIPS positioning algorithms as a function
of the number of sample points per phase offset measurement. The horizontal
axis represents the number of measured sample points per phase offset mea-
surement. The four curves show the performance of the RIPS positioning algo-
rithm using a different number of frequency measurements (N = 38/19/13/10)
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Figure 4.15: RIPS performance as a function of sample points (O) per phase measure-
ment

per sender pair (M = 6) and using the full frequency bandwidth of the avail-
able frequency band (2.406 . . . 2.480 GHz). This means that we increase the
frequency hop length to {2, 4, 6, 8} MHz instead of decreasing the frequency
bandwidth. We use this strategy because experiments show that it provides
better results than the frequency-bandwidth strategy.

Figures 4.15 and 4.16 show that SRIPS converges faster and more accurately
to the true locations than RIPS. These empirical numerical results indicate that
beat signals on the CC2430 platform can be roughly collected over 0.8 ms (50
sample points) at 19 different frequencies and 6 sender pairs to have SRIPS
yield reliable results on the order of 50 cm accuracy.

Figure 4.17 shows the number of measurable phase offset measurements as
a function of the number of measured sample points per phase offset measure-
ment. Not every measurement provides a measurable phase offset measure-
ment due to noise or due to the fact that not every frequency beat is measur-
able given the measurement time and sampling rate (see Section 4.3.1). Fig-
ure 4.17 shows that the number of measurable phase offsets decreases when
the number of sample points per phase offset measurement decreases below
200, especially from 100 to 50 sample points. Two sender pairs do not gener-
ate measurable frequency beats given the measurement time per phase offset
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Figure 4.16: SRIPS performance as a function of sample points (O) per phase measure-
ment
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measurement (50 samples, 0.8 ms), because one period of the generated beat
signals is larger than the measurement time per phase offset measurement. So
the effective total measurement time reduces from 0.09 to 0.06 s when sam-
pling the beat signal with 50 sample points. This then implies that our nodes
and environment must be static during the total measurement time of all beat
signals, which is on the order of 0.1 seconds.
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Figure 4.18: Performance as a function of the amplitude filter threshold

4.5.3 Amplitude Filtering

In this section we analyze whether the amplitude filter implemented on the
CC1000 RIPS platform provides similar results on the CC2430 platform. The
amplitude filter filters frequency beat signals with an amplitude smaller than
a certain threshold ([8]). Figure 4.18 shows the performance of the RIPS and
SRIPS positioning algorithms as a function of this threshold. It shows that
the amplitude filter does not significantly affect the performance of both algo-
rithms on our platform, and that it can decrease the performance when it is
set too high. This decreasing performance with increasing threshold filtering
appears to be logical because increasing the threshold decreases the amount of
evaluated phase measurements, which in turn decreases the localization per-
formance.
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4.5.4 Performance of Typical RSS-based Localization Technique

Recent studies ([18] and [19]) show that range-based localization ([6]) outper-
forms or provides similar results to other typical localization methods in line-
of-sight environments (e.g. [5], [7]). Therefore, we evaluated the performance
of the range-based localization algorithm described in [6]. First, we calibrated
the propagation model ([4]) by the localization measurements. Then we used
the same localization measurements for evaluating the performance. This en-
sures that [6] provides the best performance. [6] provides a mean error of ∼ 6
meters, so SRIPS outperforms ranged-based RSS localization by an order of
magnitude in this measurement set-up.

4.5.5 Discussion of CC2430 RIPS versus CC2430 SRIPS Results

Figures 4.15 and 4.16 show that:

• RIPS provides a localization accuracy of several meters rather than cen-
timeters reported on the CC1000 platform.

• SRIPS outperforms the RIPS positioning algorithm in all cases investi-
gated.

As described in Section 4.4.3, these differences are mainly caused by the fact
that RIPS uses a least-squares method, which does not cope well with the 25%
outliers produced in the q-range error distributions by our test bed.

As a first candidate for the cause of these outliers, we eliminated multi-
path effects, which is further explained in Section 4.5.7. Except for random
spontaneous hardware effects, it is unlikely that the cause can be traced to the
hardware. It is unlikely because the same hardware produces reliable mea-
surements and outliers in the same locations at different times without any
noticeable changes in the environment. As a possible cause for these outliers,
we suspect the busy 2.4 GHz band, which carries a lot of traffic. All sorts of
interferences, such as those from a nearby WiFi network, might have produced
outliers in our test bed at unexpected times. The real world always has out-
liers and the good thing is that our localization algorithm dealt with them in
an adequate way.

RIPS uses a least-squares method, which is known to be susceptible to out-
liers. If we use a Least-Absolute Deviation (LAD) rather than a least-squares
optimization algorithm:
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References Measurement Total sample Error Area
time points

[8] 88747 ms NA 3 cm 324 m2

[9] 69518 ms NA 10 cm 8000 m2

[11] 440 ms 43560 61 cm 7200 m2

[12] 1252 ms 33972 70 cm 780 m2

[14] 1024 ms 46080 70 cm 100 m2

SRIPS 60 ms 11400 50 cm 400 m2

RIPS 730 ms 136800 410 cm 400 m2

RIPS(LAD) 365 ms 68400 50 cm 400 m2

TYPICAL 2000 ms 76000 620 cm 400 m2

Table 4.2: CC1000 RIPS and CC2430 SRIPS performance 1

References Frequencies Sender Platform
Pairs

[8] 13 240 CC1000
[9] 13 188 CC1000
[11] 11 1 CC1000
[12] 22 2 CC1000
[14] 18 2 CC1000
SRIPS 19 4 CC2430
RIPS 38 6 CC2430
RIPS(LAD) 38 6 CC2430
TYPICAL 38 4 senders CC2430

Table 4.3: CC1000 RIPS and CC2430 SRIPS performance 2

{x̂, ŷ} = argmin
x̂,ŷ

M∑
j=1

∣∣qest,j − ̂q-rangej
∣∣ ,

it adequately manages the 25% outliers (∼ 30 cm accuracy when evaluating
all measurements). However, the performance of LAD decreases rapidly when
decreasing the total number of sample points. LAD still provides decimeter
accuracy when sampling 100 sample points per phase measurement at 38 fre-
quencies. The error increases directly to several meters when we further de-
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crease the total number of sample points. For example, when sampling 50
sample points per phase measurement at 38 frequencies, the localization accu-
racy decreases to ∼ 9 meters while SRIPS still provides a localization accuracy
of ∼ 30 cm. Moreover, LAD needs a factor of six more measurements than
SRIPS for providing decimeter accuracy, as we show in the next section.

4.5.6 CC1000 RIPS versus CC2430 SRIPS Results

Tables 4.2 and 4.3 summarize the results obtained by the CC1000 RIPS imple-
mentation and our CC2430 SRIPS implementation. These tables consist of eight
columns:

• References is the reference used or the name of the positioning algorithm
evaluated.

• Measurement time is the total measurement time of one target node. We
use Equation 4.2 to calculate the total measurement time.

• Total sample points is the total number of sample points used to position
one target node. We use Equation 4.1 to calculate the total number of
sampling points.

• Error is the mean of the positioning error.

• Area is the surface area of the localization surface.

• Frequencies is the number of frequencies used per sender pair.

• Sender pairs is the number of sender pairs used by RIPS and SRIPS.

• Platform is the radio platform used.

The first two rows show the performance of the RIPS network localization
([8] and [9]). This set-up characterizes itself by the relatively long sampling
time (minutes) and high accuracy (centimeters). The remaining rows repre-
sent the performance using the infrastructure approach as described in Section
4.2.2. The difference between the two approaches clearly shows that the per-
formance improves with increasing sampling time. [8]/[9] increase the per-
formance by a factor of 10 compared to [11]/[12]/[14]/SRIPS at the cost of an
increased sampling time by a factor of 250.
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[11] differs from [12]/[14]/SRIPS in that it implements the target-as-sender
instead of the target-as-receiver approach. It is difficult to compare the re-
sults between these two implementations because [11] calculates 55 q-ranges
on the basis of one measurement round. The disadvantage of this approach is
that the measurement time increases linearly with the number of target nodes,
which is not the case with the target-as-receiver approach. In addition, [11]
estimates positions of mobile nodes, while [12]/[14]/SRIPS estimate the posi-
tions of static nodes. Note that [12] and [14] also estimate the position of mobile
nodes, but we leave these results out of the table. For completeness, we added
the results of the Least-Absolute Deviation method described in Section 4.5.5.

Tables 4.2 and 4.3 show that SRIPS provides comparable results as reported
by [11]/[12]/[14], while reducing the sampling time by a factor of 15 com-
pared with a target-as-receiver implementation. A factor of 7 is explained by
the seven times faster sampling rate of the CC2430. In general, SRIPS requires
a factor of 3 fewer measurements compared with the CC1000 implementation.
This is because RIPS requires q-range measurements with a relatively high pre-
cision (the global minimum is required to be at the true q-range). This high
precision is obtained by increasing the measurement time per sender pair ([12]
and [14]). SRIPS does not have this requirement as we have seen. Therefore,
SRIPS can reduce the required measurement time per sender pair significantly,
while increasing the number of sender pairs. This finally results in requiring
a factor of 3 fewer measurements, excluding the seven times higher sampling
rate available with our CC2430 radio platform.

4.5.7 Radio Interferometric Positioning in Indoor Environments

Both RIPS and SRIPS use the same propagation model that models the elec-
tromagnetic energy as scalar plane waves. This scalar approach neglects the
polarization effects that start to play a role when the dimensions of the obsta-
cles that meet these propagating waves become of the order of the wavelengths
of the carrier waves. In addition, the propagation model does not account for
multiple reflections, such as those that are commonly modeled in the area of
image reconstruction. Hence, both RIPS and SRIPS cannot reliably localize
in such environments. Our preliminary set of indoor measurements in a hall
with metal frames confirms this. The results were especially unreliable when
the nodes were near these metal frames. But we did obtain decimeter accuracy
in those cases where only a few nodes suffered from interfering reflections.
Hence, when multiple reflections are not dominating the measurements, SRIPS
holds the promise of the ability to discriminate between those reflections.
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4.6 Conclusion

In this study, we experimentally verified that it is possible to perform Radio
Interferometric Positioning on commonly available radio platforms, such as
the CC2430. Such radio platforms do not comply with the frequency tuning
requirements of the existing RIPS implementation on the CC1000 platform.

Experiments on the CC2430 platform showed that the RIPS positioning al-
gorithm does not provide decimeter accuracy, because it cannot cope with the
outliers generated by the CC2430 platform. This chapter introduced a novel
RIPS algorithm, which we call Stochastic Radio Interferometric Positioning
(SRIPS). SRIPS was shown to cope with the varying accuracies of the distance
estimates without any calibration and with relatively short measurement times
compared with the existing CC1000 RIPS implementation. Experiments in a
20× 20 m2 set-up showed that our SRIPS CC2430 implementation reduces the
measurement time to less than 0.1 seconds, while providing an accuracy simi-
lar to the existing RIPS implementation on the CC1000 platform.
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CHAPTER 5

Space-based RSS localization

This chapter introduces a novel approach to Received Signal Strength (RSS)
radio localization. We call this approach space-based RSS. It derives its idea
from spatial image reconstruction in Fourier Optics. We show that the resolv-
ing power of signal reconstruction determines the localization performance
bound. In the far field, this resolving power is independent of whether sam-
pling is performed in space, time or frequency domains as long as the effective
number of measurements is equal. Space-based RSS samples RSS over space
and can be designed to provide the same resolving power and performance as
TOF- and phase-based localization. In our space-based RSS implementation,
the far fields from an array of multiplexed fixed transmitters are sampled over
localization space with a mobile node. In one-dimension, we experimentally
show that the performance of space-based RSS approaches the lower bound of
one wavelength of the carrier signal (12.5 cm) in a range of 50 m. In a two-
dimensional Line-Of-Sight(LOS) outdoor environment, we obtain a similar lo-
calization performance (0.6 m in an area of 20×20 m2) as the more complicated
techniques of TOF and phase measurements, all performed by us for validat-
ing this comparison. In a Non-Line-Of-Sight(NLOS) indoor environment, our
localization performance is shown to be significantly better (1 m in an area of
40×15 m2).

5.1 Introduction

This chapter focuses on RSS-based localization and compares its localization
performance to TOF- and phase-based localization systems. The advantage of
RSS measurements is the relatively low energy consumption, simplicity and
widespread availability. Existing papers on the performance bound of RSS-
based localization focus on static networks ([4] and [14]). In such studies, the
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localization performance is assumed to increase with the number of measure-
ments to fixed nodes with known and unknown positions ([4] and [14]), in-
cluding calibration measurements. In a practical set-up with a limited amount
of fixed nodes, this results in a localization performance of several meters ([7]
and [15]). In general, more complicated techniques like TOF- and phase-based
localization offer better performances in these set-ups (e.g. [4] and [18]). For
example, [18] describes that phase measurements perform a factor of 20 better
than RSS measurements in a 20×20 m2 outdoor environment with four fixed
nodes with known positions.

This chapter theoretically and experimentally shows that RSS-based local-
ization can provide similar results as TOF- and phase-based systems by mea-
suring RSS over space. We call this approach space-based RSS. Our experi-
ments over a one-dimensional trajectory show that the performance of space-
based RSS approaches the theoretical bound of roughly one wavelength (12.5
cm over a range of 50 m) as determined by the Rayleigh Criterion ([5]). Out-
door experiments in an ideal 20×20 m2 LOS environment, with four nodes
with known positions, show that our new approach provides similar perfor-
mances (0.6 m) as existing TOF- and phase-based approaches ([23] and [18]).
Indoor experiments in a 40×15 m2 NLOS office environment, with six nodes
with known positions, show that our space-based RSS localization system in-
creases the performance to 1 m, compared to 5 m achieved by existing TOF-
and phase-based localization systems.

5.1.1 Contributions

We see three contributions in this research:

• We compare theoretical performance bounds of RSS-, TOF- and phase-
based localization. This analysis shows that RSS-based localization can
obtain similar results as TOF- and phase-based localization by measuring
RSS over space.

• Our experiments over one and two dimensions in an ideal LOS out-
door environment show (1) that the theoretical performance bound of
roughly 1.22 wavelengths can be obtained over a linear trajectory of 50
m, and (2) that space-based RSS provides similar performances (0.6 m) as
the more complex TOF- and phase-based localization systems in a two-
dimensional LOS set-up of 20×20 m2.
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• Our experiments in a 40×15 m2 indoor NLOS office environment show
that space-based RSS is more robust to fading effects than TOF- and phase-
based localization and increases the performance by a factor of five to
roughly 1 m.

5.1.2 Fundamentals of localization

Radio localization describes the process of obtaining a physical location in an
automated manner using radio communication. The wave parameters like
time, position, temporal frequency and spatial frequency are represented in the
propagation model. Propagation models are mathematical representations of
far-field solutions of the Maxwell equations. Mathematically, localization then
reduces to fitting the measured signals at the unknown location to the appro-
priate propagation model. We analyze the performance bounds of the various
ranging methods by applying the Uncertainty Principle on the wave parame-
ters of the radio waves. Like the Cramer-Rao-Lower-Bound, the Uncertainty
Principle is an expression of the Cauchy-Schwartz inequality, and both take on
the same form for signals with a wave character. Our analysis shows that the
effective number of measurements in time, temporal frequency band and space
domain determine the resolving power of the measured ranges. This effective
number of measurements is interchangeable in the three domains due to the
general wave character of the signals in their far fields. In other words, phase-,
TOF- and RSS-based localization systems provide similar performance bounds
when the effective number of measurements is the same.

5.1.3 Space-based RSS

The idea of space-based RSS has its origin from image reconstruction in Fourier
Optics ([5]). In Fourier Optics, a signal is sampled over space to reconstruct
the transmitted signal at a given position. The optimal resolving power is
provided when the signal is sampled with the maximum effective resolution
over the entire localization space. Space-based RSS samples signal intensi-
ties (RSS) over space with a mobile node (with unknown position) to recon-
struct the signal and the position of a transmitter (with unknown position).
The mobile node estimates its position by measuring signal intensities to an
array of fixed transmitters with known positions. The maximum resolving
power is obtained when the localization surface is sampled with the resolution
defined by the Rayleigh Criterion for incoherent signals. As already stated



102 5 Space-based RSS localization

above, we experimentally apply this space-based RSS localization to a one-
dimensional trajectory, to a two-dimensional LOS outdoor environment, and
to a two-dimensional NLOS indoor environment. We find general agreement
between theory and experiments.

5.1.4 Overview

This chapter is arranged in the following way. Section 5.2 briefly reviews
the underlying physics of the uncertainties or lower and upper performance
bounds on signals with a periodic wave character. Section 5.3 describes the
setup and results for one-dimensional ranging and Section 5.4 for the new two-
dimensional approach. Section 5.5 evaluates our space-based RSS implemen-
tation and compares it to other localization systems. Section 5.6 discusses the
results and relates it to existing work in this field. Finally, Section 5.7 gives the
conclusions.

5.2 Analysis of Performance Bounds

In this section, we theoretically compare the resolving power and performance
of phase-, TOF- and RSS-based localization techniques. We use the fact that
these techniques are based on signals with a periodic wave character measured
in the far field. In order to reconstruct such signals with optimal resolving
power, we compute the minimum number of required sample points. For a
thorough analysis on scalar wave propagation, we refer to [5].

The amplitude, V , of a wave radiating from a point source at the origin
measured in the far field at position, �r, is represented by:

V
(
�k, �r, f, t, ϕ

)
= Vref ·

sin
(
�k · �r + 2πft+ ϕ

)
(�k · �r)

(5.1)

Here, �k is the wave vector, f is the temporal frequency, t is the time, and ϕ
is the phase. Time and traveling distance, d = |�r|, are connected by the con-
stant speed of light, c, as are temporal frequency and wavelength, λ = c

f = 2π

|
k|
. In the far field, �k · �r >> 1, traveling distance, d, and spatial frequency, 1

λ , are
Fourier conjugates as are time, t, and temporal frequency, f . The fundamental
upper and lower bounds on the bandwidths (FWHM, Full Width at Half Max-
imum) of these pairs of wave parameters can be simultaneously estimated by
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the respective Uncertainty Principles that hold for Fourier conjugates of wave
parameters. The lower bounds on the bandwidths of these respective parame-
ters are estimated by:

Δt · δf � 1 (5.2)

δt ·Δf � 1 (5.3)

Δ
1

λ
· δd � 1 (5.4)

δ
1

λ
·Δd � 1 (5.5)

Here, δf , δt, δ 1
λ and δd represent the lower bounds or smallest measurable

quantity of the wave parameters. The upper bounds or measuring ranges of
the wave parameters are represented by Δf , Δt, Δ 1

λ and Δd. For example, δf
equals the FWHM of the carrier wave during a given measurement time, Δt.
It follows directly from Equations 5.2, 5.3, 5.4 and 5.5 that the resolving power
of the respective wave parameters is connected to each other through:

δt

Δt
=

δf

Δf
=

δ 1
λ

Δ 1
λ

=
δd

Δd
=

1

N
(5.6)

In Equation 5.6, N , is the minimum number of required measurement points
on Δd. For coherent signals this minimum number is determined by the Nyquist
sampling rate, which corresponds to two sample points per temporal period,
1
f . For incoherent signals, this minimum is determined by the Rayleigh Cri-
terion which corresponds to one sample point per 1.22 wavelengths. Such
minimum numbers are called the effective number of sample measurements.
Increasing the number of samples beyond this number does not increase the re-
solving power (so-called empty magnification). The effective number of sam-
ple measurements follows from the Uncertainty Principles as the ratio of lower
and upper bounds as expressed by Equation 5.6. In the time domain, the upper
bound is limited by the coherence time of the carrier waves. In space, the up-
per bound is determined by the longest diagonal cross-section of the sampled
localization space and leads to the diffraction limit as given by the Rayleigh
criterion. This latter upper bound should be smaller than the product of the
coherence time of the carrier wave and the speed of light.
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The carrier frequency cannot be determined beyond its natural bandwidth
or spread, δf , of the transmitted and received signals. This means that in-
creasing the measurement time beyond the coherence time, 1

δf = Δtc, does
not further increase the resolving power (or decrease the bandwidth). We as-
sume that the natural bandwidth of the transmitted signals is determined by
the Q-factor of the crystal oscillator, or δf = f

Q . To make a fair comparison,
this stability is assumed to be equal for all localization techniques. We follow
the 802.15.4 guidelines ([3]), so that our crystal oscillators transmit in the 2.4
GHz range (f = 2.4 ∗ 109 Hz) and have a Q-factor of 104 (σ = 40 ppm, FWHM
≈ 2.4 · 40 ≈ 100 ppm). The coherence time is given by 1

δf = Δt = Δtc ≈
4.2 · 10−6 s (FWHM). We assume that the localization techniques sample each
signal within the coherence time.

The following three sections analyze the resolving power in existing phase-
, TOF- and RSS-based localization techniques. The fourth subsection analyzes
the resolving power of space-based RSS. The last subsection compares these
four resolving powers.

5.2.1 Phase-Based Localization

Phase-based localization determines the distance or range, Δd, on the basis
of phase difference measurements, Δϕ, between transmitter-receiver pairs as
given by:

Δd = (nλ +Δϕ)λ (5.7)

Here, nλ is an integral number of wavelengths in Δd, nλ = 
Δd
λ �, and is

assumed to be known. For further analysis of phase-based localization we
refer to [1]. The natural bandwidth of the beat signal, δfb, translates into a
wavelength deviation as:

δλb ≈ −δfb
fb

λb (5.8)

Using Equations 5.2, 5.3, 5.4 and 5.5 and using the Q-factor of our oscillators
gives the following resolving power:

δd

Δd
≈ δfb

fb
≈ δf

f
=

δt

Δt
= 5 · 10−5 (5.9)

Equation 5.9 shows that the resolving power is about equal to the natural
bandwidth relative to the carrier frequency ( δff ), which amounts to the inverse
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of the effective number of samples over time ( δt
Δt ). Here δt is determined by the

Nyquist sampling rate. The theoretically attainable resolving power of 0.005%,
calculated for 802.15.4 radios, is a factor of 10 better than the resolving power
measured in [11] (∼ 5 centimeter performance on 100 meters). We expect that
this difference is caused by that the localization in [11] assumes that nλ is not
known, which increases the error significantly. In principle, further interpola-
tion of phases beyond the Nyquist limit is possible using, for instance, Doppler
shifts. This falls outside the scope of this chapter.

5.2.2 TOF-Based Localization

TOF-based localization determines the distance on the basis of a Time-Of-Flight
measurement. We analyze the resolving power of the distance estimate of
TOF measurements between one sender - receiver pair. In TOF-based local-
ization, the resolving power depends on how well the time-of-flight can be
measured given a pulse of Δt seconds with a bandwidth of Δf and a crystal
oscillator with a natural bandwidth of δf . TOF systems modulate the tem-
poral frequency with time, like chirps or wavelets (e.g. [10]). The number
of measured or distinguishable temporal frequencies determines the resolving
power. For our radios, this resolving power can be derived from Equation 5.6
with Δf = 80 MHz as given by ([10]):

δf

Δf
=

1

Nf
= 3 · 10−3 =

δd

Δd
(5.10)

Here Nf represents the number of measured or distinguishable temporal
frequencies. Equation 5.10 shows that the localization performance directly re-
lates to the natural bandwidth of the carrier wave and the bandwidth of the
pulse. Note that Equation 5.10 implies that the resolving power of TOF mea-
surements is constant, independent of range and is approximately 0.3% of the
measurement distance. This resolving power, calculated for 802.15.4a radios,
is roughly equal to the resolving power estimated in [10] (∼ 60 centimeter over
100 meters with Δf = 40 MHz).

5.2.3 Existing RSS-based Localization

The Received Signal Strength is the power or intensity of the received signal,
which equals to the accumulated squared magnitudes of the frequency compo-
nents of the received signal amplitudes (Equation 5.1). The distance between
one sender and one receiver is given by:
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n

√
Pd0

RSS
= Δd (5.11)

Here, RSS is given in milliWatt (mW ). Pd0
is the “reference RSS” received at

reference distance d0. For sake of simplicity, we assume that d0 = 1 m. The ref-
erence RSS is a function of the antenna gains and transmission power ([2]). The
path loss exponent, n, represents the rate at which the power decreases with
increasing distance. In general, the power is given in dBm (Decibel Milliwatt,
e.g. [2]):

10 log10(RSS) = 10log10(Pd0)− 10n log10(Δd) (5.12)

Note that Equation 5.12 represents the well-known Log-Normal Shadowing
Model. In this empirical model, the path loss exponent is a variable parameter.
In existing RSS-based localization, the resolving power depends on how well
RSS can be measured with a pulse of Δt seconds, a bandwidth of Δf , and a
crystal oscillator with a natural bandwidth of δf :

δf

Δf
=

1

Nf
=

δd

Δd
(5.13)

However, in practical RSS setups, scanning a frequency band of Δf is not
performed with resolving power determined by the natural bandwidth of the
carrier wave and the bandwidth combined of all carrier waves. As we shall
see later in Sections 5.3.1 and 5.5, this seriously limits the attainable resolving
power.

5.2.4 Space-based RSS

In this analysis, we assume that the receiver is moving relative to the transmit-
ter over a range of Δd meters. Equation 5.6 then gives:

δ 1
λ

Δ 1
λ

≈ λ

Δd
=

1

Nd
(5.14)

Equation 5.14 implies that the resolving power of RSS measurements is not
constant but varies with the measuring range when we keep the number of
sample points constant per wavelength. This is similar to the phase-based lo-
calization case. However, the resolving power depends on the number of mea-
sured wavelengths over the measuring range (Nd = Δd

λ ) instead of the number
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Table 5.1: Performance bounds

Method Resolving Resolving power Bandwidth
Power in 802.15.4 in 2.4 GHz

Phase-based localization δf
f 5 · 10−5 80 MHz

TOF-based localization δf
Δf 3 · 10−3 80 MHz

Space-based RSS λ
Δd

0.125
Δd 5 MHz

of periods over time (Np = f · Δt). As we shall see later, sampling the signal
intensities over space does not have to be performed within the coherence time
to obtain the theoretically attainable resolving power of Equation 5.14, which
is roughly λ. The smallest measurable position difference (δd) is defined by
the Rayleigh Criterion for two incoherent sources and amounts to roughly 1.22
wavelengths.

5.2.5 Comparison

Table 5.1 shows the resolving power of the localization techniques considered.
For comparison, we set the resolving power of the various localization tech-
niques equal to the TOF technique ( δf

Δf ). Phase-based localization provides
the same resolving power by reducing the measuring time (Δt) by a factor of
( f
Δf =)60 to 70 nanoseconds. Space-based RSS provides the same resolving

power when RSS is measured over a distance of Δd =42 meters.
The advantage of space-based RSS is that the resolving power does not de-

pend on (1) the Q-factor of the crystal oscillator (δf ) as long as Δd < cΔtc, and
on (2) the available temporal frequency bandwidth Δf . This means that space-
based RSS can be implemented on any COTS narrowband radio that measures
RSS (e.g. [22]). Moreover, free temporal frequency bandwidth is sparse. For in-
stance, in the 2.4 GHz there is 80 MHz available that has to be shared between
all radios.

Space-based RSS in an NLOS indoor office environment is more robust to
spatial influences than existing TOF and phase-based solutions in the 2.4 GHz
range (see Section 5.5), without increasing the required bandwidth. The disad-
vantage of space-based RSS is that it requires a mobile radio to measure RSS
over space.
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5.3 Experimental Analysis in one Dimension

In this section, we experimentally investigate the theoretical RSS results ob-
tained in Section 5.2 in one dimension. First, we describe the experimental
set-up used throughout this section. In the first series of measurements, we an-
alyze the resolving power of RSS measurements by adding and averaging RSS
measurements over time and temporal frequencies like is done in the existing
literature (e.g. [16]) and in line with Section 5.2.3. In the second series of mea-
surements, we analyze the resolving power of RSS measurements in the space-
domain in line with Section 5.2.4. We use the JN5148 platform ([22], 802.15.4
[3]) for measuring RSS. [22] uses 5 MHz O-QPSK signals. All measurements
are performed in the same outdoor environment as in [18].

5.3.1 RSS Measurements in One Dimension

We measure RSS between one fixed transmitter and one receiver over a dis-
tance of 50 m. The transmitter is main powered, has a power amplifier and
broadcasts messages with the maximum power allowed by ETSI ([20]). The
receiver is battery powered and does not have a power amplifier ([22]). Both
transmitter and receiver have an external dipole antenna. While measuring
RSS, we ensure that the antennas have the same vertical orientation and are in
line-of-sight for best reception. Both radios are attached to tripods for stability.
Both radios are placed at a height of 0.35 m in order to eliminate interference
with ground reflections over a range of 50 m.

The transmitter broadcasts a message every 1.6 ms with an incrementing
message count. After each transmitted message, the transmitter changes its
operating frequency, rotating between eight frequencies. These frequencies are
equal to the following IEEE 802.15.4 channels ([3]): {11,13,15,17,19,21,23,25},
and are uniformly distributed over the frequency interval [2.405 GHz, 2.475
GHz]. The receiver starts logging when it receives the first message and stores
the message counts and associated RSS measurements. The receiver synchro-
nizes to the transmitter by the received messages and it rotates through the
same frequencies. At the end of a measurement round, the receiver flushes the
logged data over a serial cable. The logged data are analyzed centrally with
Matlab. We start and end a measurement round manually.

We calibrate the Log-Normal Shadowing model parameters (See Section
5.2.3, Equation 5.12) by fitting all RSS measurements over the total range of 50
m. This fit is assumed to represent the true signal strength decay over space.
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Figure 5.1: Individual RSS measurements with fixed radios

One Dimensional RSS with Fixed Radios

In our first series of measurements, we analyze the influence of time and tem-
poral frequencies on the resolving power. In this experimental set-up, the
transmitter and receiver are fixed during the measurement rounds. We only
change the position of the receiver between the measurement rounds. The re-
ceiver measures RSS at 10 different distances in steps of 5 m (5, 10 . . . 50 m) at
8 different frequencies during 10 s (∼ 6000 RSS measurements).

Figure 5.1 shows the results of these RSS measurements. The “Best fit” (blue
curve) has the following Log-Normal Shadowing Model parameters (Equation
5.12 in Section 5.2.3, Pd0

= −20 dBm and n = 2.7). The black curve in Figure
5.1 represents the average RSS decay over distance.

The experiment shows that:

• The individual measurements provide a resolving power of 0.35 (35% of
measurement distance is error), without averaging RSS measurements
over time and temporal frequencies.

• Averaging ∼ 1000 RSS measurements over a time span of 10 seconds
per measurement distance increases the resolving power to 0.33 (33% of
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measurement distance is error). In this averaging, we did not include RSS
measurements over temporal frequencies.

• Averaging 8 consecutive RSS measurements over 8 temporal frequencies
per measurement distance increases the resolving power to 0.18 (18% of
measurement distance is error).

• Averaging RSS over time and 8 temporal frequencies increases the resolv-
ing power to 0.18 (18% of measurement distance is error).

In conclusion, averaging RSS measurements over time has a relatively small
influence on the resolving power (increasing resolving power from 0.35 to
0.33), while averaging RSS measurements over different temporal frequencies
has a limited influence on the resolving power (increasing resolving power
from 0.35 to 0.18). These measurements show that the maximum resolving
power in the 2.4 GHz band is equal to 0.18 (9 m localization performance at
50 m), if we average RSS measurements over time and temporal frequencies at
one point in space like is done in the existing literature (e.g. [16]).

One Dimensional RSS with Moving Receiver

In our second series of measurements, we analyze the influence of space on
the resolving power. In this experimental set-up, the transmitter is fixed and
the receiver is carried by a moving person. The person holding the receiver
starts walking in a straight line towards the transmitter. We manually start
the measurements when the distance between the receiver and the transmitter
equals 50 m. We manually stop the measurement when the receiver is five
meters away from the transmitter ensuring we stay in the far field. We assume
that the person holding the receiver walks with a constant speed. Therefore,
the message count determines the time, speed, distance to the transmitter, and
the temporal frequency. Note that the possible variation in speed of the receiver
and manually starting and stopping the measurement introduce ranging errors
(reduces resolving power). We performed seven measurement series.

The receiver measures RSS (RSSi) at fixed time intervals (i = 1 . . .M ) over
a certain distance interval (Δd). We are interested in the distances, di, corre-
sponding to the RSSi measurements. The distances between the individual
RSS measurements are assumed to be known (∀i, ∀j,di − dj is known). Fig-
ure 5.2 illustrates this sliding-window method. The measured RSS over the
distance interval, Δd, are fitted to the expected RSS decay over distance as rep-
resented by the equation:
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Figure 5.2: Cross correlating RSS over space

min
d̄

∑
i

(
Pd0

− 10 · n · log10(d̄+ oi)−RSSi

)2 (5.15)

Here d̄ is the average distance between the transmitter and the receiver;
oi is the distance offset between the average distance and the actual distances
(which are known); RSSi is RSS measured at distance d̄ + oi. We minimize
Equation 5.15 by sliding a window of distance interval Δd (see insert in Fig-
ure 5.2) over the total range of 200 m using a brute force optimization tech-
nique with a resolution of 0.01 m. Note that Equation 5.15 is similar to cross-
correlating a measured signal with the expected signal over space. TOF mea-
surements cross-correlate the measured signal with the expected signal over
time ([10]). In that case, the peak of the cross-correlation function is the mea-
sured time of arrival.

Figure 5.3 shows the localization performance of four different number of
temporal frequencies (Nf = {1, 2, 4, 8}) as a function of the distance interval
(Δd = {0.75, 1.5, 3, 6, 12, 24} m). The measurements show that:

• The influence of the number of temporal frequencies decreases with an
increasing distance interval.
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Figure 5.3: Error as a function of the distance interval

• The localization performance converges to 18 cm and approaches the the-
oretical limit determined by the Rayleigh Criterion of 1.22λ=15 cm (see
Section 5.2.4). Note that a localization performance of 18 cm is equal to a
resolving power of 0.0065 (≈ 1.22 λ

Δd = 1.22 0.125
24 ).

Increasing the distance interval decreases the influence of the number of
measured temporal frequencies. Hence, space-based RSS does not require ad-
ditional measurements over temporal frequencies to improve its resolving power.
This significantly reduces the implementation and network complexity.

In conclusion, we showed that it is possible to experimentally approach the
theoretical limit by measuring RSS over a distance interval of at least 24 m in
one dimension. In addition, this section experimentally showed that measur-
ing RSS in the space-domain increases the resolving power from 0.18 (Section
5.3.1) to 0.0065 (0.33 m localization performance at 50 m).

In our measurement set-up, we assumed that the distances between the
measurements were known by assuming that the receiver is moving with a
constant speed towards the transmitter. A practical implementation of this
set-up would involve inertial sensors in combination with a network of trans-
mitters (e.g. [13]). However, in this chapter we focus on an RSS-only solution.
Section 5.4 describes our implementation of a two-dimensional space-based
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RSS localization system.

5.4 Space-based RSS Localization

We now describe the network set-up of our space-based RSS localization sys-
tem. First, we describe the network set-up and how the nodes perform the
required measurements and communication. Secondly, we describe how the
obtained information is used for localization.

5.4.1 Network Set-up

Section 5.2.4 theoretically showed that the resolving power increased with an
increasing measuring space. The measurements in Section 5.3.1 experimen-
tally verified this increase. In this section, we describe our implementation
of a two-dimensional space-based RSS localization system. It derives its idea
from spatial signal reconstruction in Fourier Optics [5]. In Fourier Optics, a
signal is sampled over space to reconstruct the transmitted signal at a given
position. Our space-based RSS localization system samples RSS over the local-
ization surface with a mobile node to reconstruct the signal and the position
of a fixed transmitter at unknown position. The mobile node and the trans-
mitter do not know their locations and thus require localization. We call these
two types of nodes mobile and fixed blind nodes. The mobile nodes position
themselves by measuring RSS to transmitters with known positions, which we
call reference nodes. The optimal resolving power is provided when RSS is
sampled by a mobile node with the required resolution over the entire local-
ization space (see Section 5.2.4). However, this is not a realistic scenario as this
would require too many measurements. Therefore, in most cases the maximum
resolving power is not obtained. Section 5.5 experimentally verifies this reso-
lution issue. Figure 5.4 shows the network set-up of our localization system.
We distinguish two basic types of nodes:

• Reference nodes know their position. We distinguish two types of ref-
erence nodes: (1) infrastructure nodes (’I’ in Figure 5.4) and (2) gateways
(’G’ in Figure 5.4). The infrastructure nodes form the backbone of the
network and transmit all measurements to the gateway. The gateway
connects the wireless network to a server for centralized data processing.

• Blind nodes do not know their position and require localization. We dis-
tinguish two types of blind nodes based on their mobility characteristics:
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Figure 5.4: Our space-based RSS set-up

(1) fixed blind nodes (’F’ in Figure 5.4) and (2) mobile blind nodes (’M’ in
Figure 5.4). Fixed blind nodes are fixed during the localization process.
Mobile blind nodes are mobile and require real-time localization.

Figure 5.5 shows the communication direction and which nodes perform
the required RSS measurements for localization:

• The reference nodes broadcast their ID and the mobile nodes listen to
these messages and perform RSS measurements.

• The fixed blind nodes broadcast their ID and the reference nodes and
mobile blind nodes listen to these messages and perform RSS measure-
ments.

All RSS measurements performed by the reference nodes and mobile nodes
are forwarded to the localization server. The server processes this information
to estimate the position of all blind nodes. The next section describes how the
nodes obtain the required measurements and forward this information to the
server.
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5.4.2 Communication Protocol

Our communication protocol uses two different channels; one for performing
the RSS measurements (Broadcast Channel) and one for forwarding the RSS
measurements (Data Channel):

• The Broadcast Channel is used by the reference and fixed blind nodes
to broadcast their ID’s every 100 ms. These messages are used for (1)
RSS measurements for localization and (2) Network establishment. Ev-
ery hundred milliseconds, the reference and fixed blind nodes broadcast
their ID. The reference nodes also broadcast their current hop count for
updating their node neighborhood list and for determining the shortest
path to the gateway. Only robust links are stored in the neighborhood
list. Robust links are links that have an RSS above a certain threshold.
The mobile blind node transmits its messages to the reference node that
has the most robust link (highest RSS).

• The Data channel is used for forwarding the localization measurements
to the server. We ensure that communication in the data channel is reli-
able by using the automatic ACK’s in the IEEE 802.15.4 standard ([3]).

Our network operates as follows. The mobile blind nodes listen to the mes-
sages in the broadcast channel. When a mobile blind node receives a message,
it stores the ID, relative time of arrival, and measured signal strength. After a
short period (in our system set to one second), the mobile blind node switches
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to the data channel and forwards the collected localization measurements via
the reference nodes to the localization server.

The reference nodes form the wireless infrastructure and establish a mesh
network to the nearest gateway. The routing is based on the hop-count. A
message is forwarded to the node that is closer to the gateway and which has
a robust link. Once a minute, the reference nodes listen to messages for 250 ms
in the broadcast channel for (1) updating their hop counts and neighborhood
lists and (2) for performing RSS measurements to the fixed blind nodes. All
these measurements are forwarded to the localization server.

The fixed blind nodes broadcast their ID and go immediately into a deep
sleep mode to reduce energy consumption ([22]). We can further reduce the
energy consumption by increasing the time between consecutive broadcasts
(once every few seconds). This does not affect the localization performance,
but only decreases the convergence rate in time. The fixed blind nodes do not
measure RSS to each other and save energy by doing so.

5.4.3 Optimization Definition

Consider a wireless network that consists of R reference nodes (infrastructure
and gateway nodes), F fixed blind nodes and one mobile blind node:

• We identify the positions of R reference nodes by: x1, y1 . . . xR, yR.

• We identify the positions of F fixed blind nodes by:
xR+1, yR+1 . . . xR+F , yR+F .

• One mobile blind node that does not know its location and changes its
location every time instance. We identify the positions of the mobile blind
node over T time instances by: xM,1, yM,1 . . . xM,T , yM,T .

In each individual time instance t, the mobile node measures the RSS to the
reference and fixed blind nodes:

• We identify RSS measurements to reference nodes by: RSSt,1 . . . RSSt,R.

• We identify RSS measurements to fixed blind nodes by:
RSSt,R+1 . . . RSSt,R+F .

With these notations, the optimization problem is expressed by:
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min
θ

T∑
t=1

R∑
i=1

(
̂RSSt,i −RSSt,i

)2

+

T∑
t=1

R+F∑
j=R+1

(
̂RSSt,j −RSSt,j

)2

(5.16)

Here:

̂RSSt,i = Pd0,i − 10 · ni · log10
√

(x̂M,t − xi)2 + (ŷM,t − yi)2 (5.17)

and:

̂RSSt,j = Pd0,j − 10 · nj · log10
√
(x̂M,t − x̂j)2 + (ŷM,t − ŷi)2 (5.18)

Here Pd0,i, ni, Pd0,j and nj represent the parameters of the Log-Normal
Shadowing Model. We assume that these parameters are individually cali-
brated for each transmitter (reference nodes and fixed blind nodes). For sim-
plicity, we assume that these parameters are calibrated before localization. How-
ever, we expect that these parameters can automatically be calibrated during
the localization process as in [17] and [19]. θ represents the set of parameters
that minimizes Equation 5.16. This set consists of mobile and blind node posi-
tions:

θ = {x̂M,1, ŷM,1 . . . x̂M,T , ŷM,T , x̂R+1, ŷR+1 . . . x̂R+F , ŷR+F }
Note that Equation 5.16 can be generalized to incorporate more than one

mobile node by adding mobile node positions and RSS measurements. Our
localization algorithm uses Equation 5.16 to determine the unknown positions
of all blind nodes, this includes positions of fixed and mobile blind nodes. We
minimize Equation 5.16 with Matlab using the iterative non-linear large-scale
optimizer. We use the measurements between the reference and the individual
blind nodes to compute the start position of the individual blind nodes.

5.5 Performance Evaluation

In this section, we evaluate our space-based RSS localization system described
in Section 5.4 in an LOS outdoor and NLOS indoor environment. We compare
our localization system with existing TOF-, phase- and RSS-based systems.
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Section 5.5.1 describes how we obtained the measurements with the localiza-
tion systems and the algorithms used for evaluation. Section 5.5.2 presents the
performance of the localization systems in an ideal LOS outdoor environment.
The last section presents the performances in an NLOS indoor office environ-
ment.

5.5.1 Measurement Set-ups

In the following subsections, we describe the two-dimensional localization mea-
surement systems used. During all measurement rounds, the raw measure-
ments were sent to a computer and logged for post-processing.

Space-Based RSS System

In a space-based RSS set-up, we place and localize all fixed blind nodes at the
same time while walking through the localization area with a mobile node. In
the outdoor and indoor environment, we meandered through the localization
area for roughly ten minutes. We use the localization system described in Sec-
tion 5.4.

Existing RSS-Based Systems

We evaluate the performance of two existing RSS-based localization systems
([4] and [8]). These localization systems only process RSS measurements be-
tween reference and fixed blind nodes.

[4] describes the Maximum Likelihood Estimator given the Log-Normal
Shadowing Model (see Section 5.2.3, Equation 5.12). Although [4] is a rela-
tively old reference, the MLE of the Log-Normal Shadowing Model still pro-
vides competitive results ([14]) and is still used in the newest localization sys-
tems ([17]). We enhanced [4] by individually calibrating the transmitters (as
in [17] and Section 5.4.3). This ensures that the MLE provides the best perfor-
mance. Using a Least-Absolute-Deviations method instead of a Least-Squares
method did not improve the performance, like in [17].

[8] uses a proximity-based localization algorithm. These localization al-
gorithms only use the order of RSS measurements instead of converting RSS
measurements to distances. The advantage of [8] is that it does not require
calibration.
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TOF-Based Localization System

We evaluate the performance of TOF using the TN100 platform ([23], 802.15.4a
[12]). [23] transmits in the 2.4 GHz band and uses 80 MHz chirp signals. We
only had two ranging devices at our disposal, one infrastructure node and one
blind node. This means that we had to perform one measurement round per
reference/blind node position pair. We expect that this approach increases the
performance, because all TOF measurements have the same bias when using
the same node pair ([10]). We computed the position with a Weighted Least
Squares Method (WLSM):

min
{x̂,ŷ}

∑
i=1

Wi

(
d̂i − di)

)2

(5.19)

Here, d̂i is the distance between position estimate (x̂, ŷ) and reference node
i, di is the distance measurement to reference node i, and Wi is the weight
associated with distance measurement di. In the outdoor environment, Equa-
tion 5.19 gave the best performance with Wi = 1. In the indoor environment,
Equation 5.19 gave the best performance with Wi =

1
d2
i

.

Phase-Based Localization System

We use the results of [18] for comparison, because the measurements in [18]
were performed in the same set-up and in the same environment. [18] uses the
CC2430 platform ([21]), which also transmits in the 2.4 GHz range.

5.5.2 Performance Outdoor Environment

The measurements with the RSS-, TOF- and phase-based localization systems
were conducted in a 20×20 m2 LOS outdoor environment. In all measure-
ment set-ups, we placed one reference node at each of the four corners. We
placed and localized the fixed blind nodes at 12 different locations in a 4x4
grid. We consider this environment as an ideal environment, so we assume
that the localization systems provide the best possible performance. Table 5.2
summarizes the results obtained in this section. This table shows that:

• The existing RSS-based localization systems, using a classical network
set-up, perform an order of magnitude less relative to other localization
systems. This is in line with the theoretical and experimental results pre-
sented in Sections 5.2.3 and 5.3.1.
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Table 5.2: Performance 20×20 m2 Outdoor LOS Environment

Method Mean Median Standard
error error deviation

Proximity-based, [8] 3.8 m. 3 m. 1.2 m.
RSS- and Range-based, [4] 3 m. 2.9 m. 2 m.

Our space-based RSS 0.6 m. 0.4 m. 0.4 m.
TOF-based, [23] 0.3 m. 0.3 m. 0.2 m.

Phase-based, [18] 0.3 m. 0.2 m. 0.2 m.

Table 5.3: Performance 40×15 m2 Indoor NLOS Environment

Method Mean Median Standard
error error deviation

Proximity-based, [8] 6.3 m. 5 m. 3.8 m.
RSS- and Range-based, [4] 2.6 m. 2.3 m. 1.2 m.

Our space-based RSS 1.1 m. 1 m. 0.6 m.
TOF-based, [23] 5 m. 4.9 m. 1.9 m.

• Our space-based RSS localization system performs less than the one-
dimensional localization system presented in Section 5.3.1. This is prob-
ably because the mobile node did not sample the entire localization area
with the required resolution as given in Section 5.4.1.

• Phase- and TOF-based localization systems provide comparable results
as our space-based RSS. However, the phase- and TOF-based localiza-
tion systems require specialized hardware or precise synchronization be-
tween nodes. Our localization system only requires 5 MHz in the 2.4 GHz
band for localization, while the other localization systems use the entire
80 MHz in the 2.4 GHz band.

5.5.3 Performance Indoor Environment

RSS- and TOF-based localization was conducted in a 40×15 m2 NLOS indoor
office environment. We did not perform phase measurements in this envi-
ronment, because our phase-based localization system became unreliable in
a 15×15 m2 LOS indoor environment ([18]).
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Figure 5.6: Indoor NLOS environment

In all measurement set-ups, we placed six reference nodes in six different
rooms over the total localization space that was divided into 20 separated com-
partments. We randomly placed 12 blind nodes over the area for localization.
We consider this environment as a harsh environment, because most nodes are
not in line-of-sight of each other. Moreover, most rooms have a large metal cab-
inet (1.2 × 0.5 × 1.8 m3) and there are several walls of reinforced concrete. The
measurements were conducted during working hours, so people were walk-
ing around and influenced the measurements. Figure 5.6 shows a map of the
office space that we used for our indoor localization experiment. The green
circles represent the reference nodes, the red squares represent the fixed blind
nodes, the blue rectangles represent the large metal cabinets and the thick grey
lines represent the reinforced concrete walls. Table 5.3 summarizes the results
obtained in this section. This table shows that:

• [4] provides better results in the indoor environment than in the outdoor
environment. We expect that this is because the indoor environment had
two more reference nodes than the outdoor environment. In comparison
with the outdoor environment, [8] performs significantly less than [4].
We expect that the individual calibration of the transmitters makes [4]
more robust against environmental influences.

• TOF-based localization provides significantly less performance in indoor
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environments than in outdoor environments. These results show that the
resolving power of TOF in the time domain cannot cope with the envi-
ronmental influences in indoor environments, like multipath effects and
fading. Moreover, TOF radios estimate one distance estimate instead of
using a stochastic approach as in [18]. We expect that a stochastic ap-
proach would improve the performance significantly in an indoor envi-
ronment.

• Space-based RSS provides slightly less performance in this indoor en-
vironment than in the outdoor environment. These results show that
space-based RSS is robust against the static and dynamic environmental
influences of our office environment.

5.6 Related Work and Discussion

The theory in Section 5.2.4 shows that the resolving power of a space-based RSS
localization system increases when the RSS measuring space increases. On the
basis of this theory, we described two space-based RSS localization systems in
Sections 5.3.1 and 5.4. However, there are many space-based RSS implementa-
tions possible, as long as the RSS measuring space provides information about
one unknown range or position. For example, the system described in Section
5.3.1 relates RSS measurements over space to one unknown range by assuming
that the distances between the measurements are known (see Equation 5.15).

Static networks also increase the RSS measuring space by increasing the
number of measurements to fixed nodes. In that case, the localization perfor-
mance depends on the number of nodes in the network (e.g. [4]). For exam-
ple, [14] experimentally showed that a static network set-up requires 369 fixed
nodes with known positions to provide a median error of 0.3-0.6 m in an 18×18
m2 LOS environment. Roughly speaking, this means that a static RSS-based
localization network requires one node per square meters to provide the same
resolving power as our TOF- and phase-based localization measurements. We
theoretically and experimentally showed that the same resolving power can be
provided by measuring RSS over space with a mobile node, without increas-
ing the number of fixed nodes. We also showed that the CRLB for radio waves
cannot endlessly be decreased by adding nodes but is limited by diffraction of
these waves by the finite dimensions of the measuring surface ([5]).

This is not the first paper that uses a mobile node in an RSS-based localiza-
tion system (e.g. [6] and [17]). However, most work on RSS-based localization
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with mobile nodes differ in network set-up, purpose and localization perfor-
mance. For example, [6] uses a mobile reference node and [17] focuses on the
ease of installation and the localization performance of the mobile node.

The resolving power of space-based RSS is limited by its under bound of
roughly one wavelength divided by its ultimate upper bound of the speed of
light times coherence time of the carrier waves. The resolving power of phase-
and TOF-based localization systems are usually fixed by design, so that larger
ranges lead to less localization performance. Due to the general wave character
of our radio signals, Green′s theorem over a two-dimensional surface reduces
to a contour integration along the circumference of this surface. Our future re-
search aims to simplify our space-based localization by taking the convex hull
of our localization surface that is at least in the far field of any infrastructure
node and measures RSS along this contour. Surface integration of radio signals
then simplifies to contour integration, a technique widely applied in electro-
magnetic theory.

5.7 Conclusion

Our new space-based RSS localization system appears to work well in outdoor
and indoor environments. In the one-dimensional case, the lower performance
bound appears to be limited by the Rayleigh criterion and cannot be further de-
creased by just adding nodes or more measurements. In our two-dimensional
outdoor experiments, we experimentally verified that our space-based RSS is
designed to attain similar localization performances as the more complex local-
ization systems based on phase measurements and TOF. Our two-dimensional
indoor experiments in a harsh office environment with moving human beings,
metal cabinets and armed concrete walls, our space-based RSS localization sys-
tem appears to outperform existing localization systems known to us. Future
research is aimed at further simplifying space-based RSS by not sampling RSS
over localization space but along the circumference of that space.
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CHAPTER 6

CONCLUSION

This research explored location estimation in networks using radio communi-
cation in the far field. In the far field, the measured signals are a function of
the wave parameters time, position, temporal frequency and spatial frequency.
Localization systems estimate blind node positions by estimating these wave
parameters from sampling radio signals over space, time, or phase domains.
Mathematically, localization then reduces to fitting measured signals at un-
known locations. This research theoretically and experimentally explored the
performance and robustness of RSS-, TOF- and phase-based localization sys-
tems operating in the 2.4 GHz regime.

We showed that the effective number of measurements in time, temporal
frequency band and space domain determine the resolving power of measured
ranges or positions. The effective number of measurements is equal to the
measuring range (upper bound) divided by the smallest measurable quanti-
tity (lower bound). This effective number of measurements is interchangeable
in the three domains due to the general wave character of signals in their far
fields. In other words, phase-, TOF- and RSS-based localization systems pro-
vide similar performance when the effective number of measurements is the
same. We experimentally verified this theoretical insight in LOS outdoor envi-
ronments.

We showed that the resolving power of RSS-based localization systems in-
creases with the number of measurements over space until a certain bound
is reached, the so-called Rayleigh criterion for incoherent electromagnetic sig-
nals. Rayleigh’s diffraction limit bounds the localization performance and thus
the measurement resolution to roughly one wavelength as stated in Hypothesis
one. In traditional RSS-based localization setups, blind nodes measure signal
intensities from an array of reference nodes. In such traditional setups, the ef-
fective number of measurements is equal to the number of reference nodes. In
general, this number is significantly lower than with other localization systems.
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In other words, TOF- and phase-based localization systems outperform RSS-
based localization systems in traditional localization setups. In Chapter 2, we
increased the resolving power by measuring connectivity between blind nodes.
In that case, the resolving power depends on the blind node density, which is
an unwanted property. In Chapter 5, we increased the resolving power by us-
ing a mobile node with unknown positions. We called this localization system
space-based RSS. We experimentally verified that our space-based RSS local-
ization system provides a similar performance as TOF- and phase-based local-
ization systems in a 20x20m2 LOS outdoor environment with four reference
nodes placed at the corners of the localization area. These experiments verified
Hypothesis three.

The theoretically expected resolving power is obtained when the propaga-
tion model matches reality, like in an ideal LOS outdoor environment. In NLOS
indoor environments, the performance of these localization systems depends
on how well propagation models are able to capture static and dynamic en-
vironmental influences. Propagation models used by RSS-based localization
systems are often empirical models that introduce parameters to capture these
environmental influences. The optimal values of these parameters depend on
the locally varying electromagnetic permittivity and permeability of the local-
ization space. In other words, the propagation model needs to account for
local and temporal differences in the localization environment. In Chapter 3,
we determined the constraints under which such a propagation model can be
optimally and automatically calibrated. Measurements showed that such ap-
proach can cope better with dynamic environmental influences like unknown
antenna orientations, so that Hypothesis two is validated.

In Chapters 4 and 5, we performed localization measurements in an NLOS
office environment to measure how well different localization systems can cope
with NLOS environmental influences. These measurements showed that our
space-based RSS localization system outperforms existing TOF- and phase-
based localization systems in an NLOS indoor environment. The main differ-
ence between the approaches is that our space-based RSS localization system
performs measurements in the space domain, while TOF- and phase-based lo-
calization systems perform measurements in the time domain. As one would
theoretically expect, measurements in the space domain can cope better with
the spatial dispersion in NLOS indoor environments than measurements in the
time domain. The latter ones cannot cope with NLOS signals, whereas space-
based measurements record useful signal information on the spatial dispersion
of NLOS environments. Although these measurements over space did not
completely validate our Hypothesis four, they established a new benchmark
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as performance bound and confirmed the direction that our simple theory on
bounds works.

As indicated in the “goals and challenges” section (Section 1.1), we strived
to balance a combination of theoretical, experimental and practical aspects
throughout our research. We implemented three different measurement sys-
tems on two different COTS radio platforms to perform the required measure-
ments for experimental verification of the theoretical concepts we use. In Chap-
ter 5, we implemented a space-based RSS localization system. This localization
system automatically forms a multi-hop network to forward the necessary data
to the gateway and server. The localization server uses the localization algo-
rithm described in Chapter 3 to automatically calibrate the propagation model
and position the mobile blind node. The algorithm described in Chapter 5 is
used to position static blind nodes. The user only needs to set the positions
of the infrastructure nodes. The localization system is “plug-and-play” and
keeps the “deployment and maintenance costs” as low as possible. Moreover,
the same network is used for forwarding sensor data. A website enables the
user to observe localization as well as sensor data. We believe that this local-
ization system serves as a step forward to further closing the gap between the
ever growing set of practical requirements and our ever increasing scientific
insight in the lost space in which we live.
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